6,071 research outputs found

    Active Collaborative Ensemble Tracking

    Full text link
    A discriminative ensemble tracker employs multiple classifiers, each of which casts a vote on all of the obtained samples. The votes are then aggregated in an attempt to localize the target object. Such method relies on collective competence and the diversity of the ensemble to approach the target/non-target classification task from different views. However, by updating all of the ensemble using a shared set of samples and their final labels, such diversity is lost or reduced to the diversity provided by the underlying features or internal classifiers' dynamics. Additionally, the classifiers do not exchange information with each other while striving to serve the collective goal, i.e., better classification. In this study, we propose an active collaborative information exchange scheme for ensemble tracking. This, not only orchestrates different classifier towards a common goal but also provides an intelligent update mechanism to keep the diversity of classifiers and to mitigate the shortcomings of one with the others. The data exchange is optimized with regard to an ensemble uncertainty utility function, and the ensemble is updated via co-training. The evaluations demonstrate promising results realized by the proposed algorithm for the real-world online tracking.Comment: AVSS 2017 Submissio

    Discriminative Transfer Learning for General Image Restoration

    Full text link
    Recently, several discriminative learning approaches have been proposed for effective image restoration, achieving convincing trade-off between image quality and computational efficiency. However, these methods require separate training for each restoration task (e.g., denoising, deblurring, demosaicing) and problem condition (e.g., noise level of input images). This makes it time-consuming and difficult to encompass all tasks and conditions during training. In this paper, we propose a discriminative transfer learning method that incorporates formal proximal optimization and discriminative learning for general image restoration. The method requires a single-pass training and allows for reuse across various problems and conditions while achieving an efficiency comparable to previous discriminative approaches. Furthermore, after being trained, our model can be easily transferred to new likelihood terms to solve untrained tasks, or be combined with existing priors to further improve image restoration quality

    Understanding and Diagnosing Visual Tracking Systems

    Full text link
    Several benchmark datasets for visual tracking research have been proposed in recent years. Despite their usefulness, whether they are sufficient for understanding and diagnosing the strengths and weaknesses of different trackers remains questionable. To address this issue, we propose a framework by breaking a tracker down into five constituent parts, namely, motion model, feature extractor, observation model, model updater, and ensemble post-processor. We then conduct ablative experiments on each component to study how it affects the overall result. Surprisingly, our findings are discrepant with some common beliefs in the visual tracking research community. We find that the feature extractor plays the most important role in a tracker. On the other hand, although the observation model is the focus of many studies, we find that it often brings no significant improvement. Moreover, the motion model and model updater contain many details that could affect the result. Also, the ensemble post-processor can improve the result substantially when the constituent trackers have high diversity. Based on our findings, we put together some very elementary building blocks to give a basic tracker which is competitive in performance to the state-of-the-art trackers. We believe our framework can provide a solid baseline when conducting controlled experiments for visual tracking research
    corecore