2,016 research outputs found

    Probabilistic Checking Against Non-Signaling Strategies from Linearity Testing

    Get PDF
    Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is probabilistically checkable proofs (PCPs) that are sound against non-signaling strategies. In this paper we prove that the exponential-length constant-query PCP construction due to Arora et al. (JACM 1998) is sound against non-signaling strategies. Our result offers a new length-vs-query tradeoff when compared to the non-signaling PCP of Kalai, Raz, and Rothblum (STOC 2013 and 2014) and, moreover, may serve as an intermediate step to a proof of a non-signaling analogue of the PCP Theorem

    Toward probabilistic checking against non-signaling strategies with constant locality

    Get PDF
    Non-signaling strategies are a generalization of quantum strategies that have been studied in physics over the past three decades. Recently, they have found applications in theoretical computer science, including to proving inapproximability results for linear programming and to constructing protocols for delegating computation. A central tool for these applications is probabilistically checkable proof (PCPs) systems that are sound against non-signaling strategies. In this thesis we show, assuming a certain geometrical hypothesis about noise robustness of non-signaling proofs (or, equivalently, about robustness to noise of solutions to the Sherali-Adams linear program), that a slight variant of the parallel repetition of the exponential-length constant-query PCP construction due to Arora et al. (JACM 1998) is sound against non-signaling strategies with constant locality. Our proof relies on the analysis of the linearity test and agreement test (also known as the direct product test) in the non-signaling setting

    On Local Testability in the Non-Signaling Setting

    Get PDF
    Non-signaling strategies are a generalization of quantum strategies that have been studied in physics for decades, and have recently found applications in theoretical computer science. These applications motivate the study of local-to-global phenomena for non-signaling functions. We prove that low-degree testing in the non-signaling setting is possible, assuming that the locality of the non-signaling function exceeds a threshold. We additionally show that if the locality is below the threshold then the test fails spectacularly, in that there exists a non-signaling function which passes the test with probability 1 and yet is maximally far from being low-degree. Along the way, we present general results about the local testability of linear codes in the non-signaling setting. These include formulating natural definitions that capture the condition that a non-signaling function "belongs" to a given code, and characterizing the sets of local constraints that imply membership in the code. We prove these results by formulating a logical inference system for linear constraints on non-signaling functions that is complete and sound

    Testing Linearity against Non-Signaling Strategies

    Get PDF
    Non-signaling strategies are collections of distributions with certain non-local correlations. They have been studied in Physics as a strict generalization of quantum strategies to understand the power and limitations of Nature\u27s apparent non-locality. Recently, they have received attention in Theoretical Computer Science due to connections to Complexity and Cryptography. We initiate the study of Property Testing against non-signaling strategies, focusing first on the classical problem of linearity testing (Blum, Luby, and Rubinfeld; JCSS 1993). We prove that any non-signaling strategy that passes the linearity test with high probability must be close to a quasi-distribution over linear functions. Quasi-distributions generalize the notion of probability distributions over global objects (such as functions) by allowing negative probabilities, while at the same time requiring that "local views" follow standard distributions (with non-negative probabilities). Quasi-distributions arise naturally in the study of Quantum Mechanics as a tool to describe various non-local phenomena. Our analysis of the linearity test relies on Fourier analytic techniques applied to quasi-distributions. Along the way, we also establish general equivalences between non-signaling strategies and quasi-distributions, which we believe will provide a useful perspective on the study of Property Testing against non-signaling strategies beyond linearity testing

    Robust Randomness Amplifiers: Upper and Lower Bounds

    Get PDF
    A recent sequence of works, initially motivated by the study of the nonlocal properties of entanglement, demonstrate that a source of information-theoretically certified randomness can be constructed based only on two simple assumptions: the prior existence of a short random seed and the ability to ensure that two black-box devices do not communicate (i.e. are non-signaling). We call protocols achieving such certified amplification of a short random seed randomness amplifiers. We introduce a simple framework in which we initiate the systematic study of the possibilities and limitations of randomness amplifiers. Our main results include a new, improved analysis of a robust randomness amplifier with exponential expansion, as well as the first upper bounds on the maximum expansion achievable by a broad class of randomness amplifiers. In particular, we show that non-adaptive randomness amplifiers that are robust to noise cannot achieve more than doubly exponential expansion. Finally, we show that a wide class of protocols based on the use of the CHSH game can only lead to (singly) exponential expansion if adversarial devices are allowed the full power of non-signaling strategies. Our upper bound results apply to all known non-adaptive randomness amplifier constructions to date.Comment: 28 pages. Comments welcom

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher
    • …
    corecore