44 research outputs found

    Privacy-Preserving Edge Caching: A Probabilistic Approach

    Full text link
    Edge caching (EC) decreases the average access delay of the end-users through caching popular content at the edge network, however, it increases the leakage probability of valuable information such as users preferences. Most of the existing privacy-preserving approaches focus on adding layers of encryption, which confronts the network with more challenges such as energy and computation limitations. We employ a chunk-based joint probabilistic caching (JPC) approach to mislead an adversary eavesdropping on the communication inside an EC and maximizing the adversary's error in estimating the requested file and requesting cache. In JPC, we optimize the probability of each cache placement to minimize the communication cost while guaranteeing the desired privacy and then, formulate the optimization problem as a linear programming (LP) problem. Since JPC inherits the curse of dimensionality, we also propose scalable JPC (SPC), which reduces the number of feasible cache placements by dividing files into non-overlapping subsets. We also compare the JPC and SPC approaches against an existing probabilistic method, referred to as disjoint probabilistic caching (DPC) and random dummy-based approach (RDA). Results obtained through extensive numerical evaluations confirm the validity of the analytical approach, the superiority of JPC and SPC over DPC and RDA

    Edge Cache-assisted Secure Low-Latency Millimeter Wave Transmission

    Get PDF
    In this paper, we consider an edge cache-assisted millimeter wave cloud radio access network (C-RAN). Each remote radio head (RRH) in the C-RAN has a local cache, which can pre-fetch and store the files requested by the actuators. Multiple RRHs form a cluster to cooperatively serve the actuators, which acquire their required files either from the local caches or from the central processor via multicast fronthaul links. For such a scenario, we formulate a beamforming design problem to minimize the secure transmission delay under transmit power constraint of each RRH. Due to the difficulty of directly solving the formulated problem, we divide it into two independent ones: {\textit{i)}} minimizing the fronthaul transmission delay by jointly optimizing the transmit and receive beamforming; {\textit{ii)}} minimizing the maximum access transmission delay by jointly designing cooperative beamforming among RRHs. An alternatively iterative algorithm is proposed to solve the first optimization problem. For the latter, we first design the analog beamforming based on the channel state information of the actuators. Then, with the aid of successive convex approximation and SS-procedure techniques, a semidefinite program (SDP) is formulated, and an iterative algorithm is proposed through SDP relaxation. Finally, simulation results are provided to verify the performance of the proposed schemes.Comment: IEEE_IoT, Accep

    A Survey on Energy Optimization Techniques in UAV-Based Cellular Networks: From Conventional to Machine Learning Approaches

    Get PDF
    Wireless communication networks have been witnessing an unprecedented demand due to the increasing number of connected devices and emerging bandwidth-hungry applications. Albeit many competent technologies for capacity enhancement purposes, such as millimeter wave communications and network densification, there is still room and need for further capacity enhancement in wireless communication networks, especially for the cases of unusual people gatherings, such as sport competitions, musical concerts, etc. Unmanned aerial vehicles (UAVs) have been identified as one of the promising options to enhance the capacity due to their easy implementation, pop up fashion operation, and cost-effective nature. The main idea is to deploy base stations on UAVs and operate them as flying base stations, thereby bringing additional capacity to where it is needed. However, because the UAVs mostly have limited energy storage, their energy consumption must be optimized to increase flight time. In this survey, we investigate different energy optimization techniques with a top-level classification in terms of the optimization algorithm employed; conventional and machine learning (ML). Such classification helps understand the state of the art and the current trend in terms of methodology. In this regard, various optimization techniques are identified from the related literature, and they are presented under the above mentioned classes of employed optimization methods. In addition, for the purpose of completeness, we include a brief tutorial on the optimization methods and power supply and charging mechanisms of UAVs. Moreover, novel concepts, such as reflective intelligent surfaces and landing spot optimization, are also covered to capture the latest trend in the literature.Comment: 41 pages, 5 Figures, 6 Tables. Submitted to Open Journal of Communications Society (OJ-COMS

    Optimizing Resource Allocation with Energy Efficiency and Backhaul Challenges

    Get PDF
    To meet the requirements of future wireless mobile communication which aims to increase the data rates, coverage and reliability while reducing energy consumption and latency, and also deal with the explosive mobile traffic growth which imposes high demands on backhaul for massive content delivery, developing green communication and reducing the backhaul requirements have become two significant trends. One of the promising techniques to provide green communication is wireless power transfer (WPT) which facilitates energy-efficient architectures, e.g. simultaneous wireless information and power transfer (SWIPT). Edge caching, on the other side, brings content closer to the users by storing popular content in caches installed at the network edge to reduce peak-time traffic, backhaul cost and latency. In this thesis, we focus on the resource allocation technology for emerging network architectures, i.e. the SWIPT-enabled multiple-antenna systems and cache-enabled cellular systems, to tackle the challenges of limited resources such as insufficient energy supply and backhaul capacity. We start with the joint design of beamforming and power transfer ratios for SWIPT in MISO broadcast channels and MIMO relay systems, respectively, aiming for maximizing the energy efficiency subject to both the Quality of Service (QoS) constraints and energy harvesting constraints. Then move to the content placement optimization for cache-enabled heterogeneous small cell networks so as to minimize the backhaul requirements. In particular, we enable multicast content delivery and cooperative content sharing utilizing maximum distance separable (MDS) codes to provide further caching gains. Both analysis and simulation results are provided throughout the thesis to demonstrate the benefits of the proposed algorithms over the state-of-the-art methods

    Multi-Agent Reinforcement Learning-Based Buffer-Aided Relay Selection in IRS-Assisted Secure Cooperative Networks

    Get PDF
    This paper proposes a multi-agent deep reinforcement learning-based buffer-aided relay selection scheme for an intelligent reflecting surface (IRS)-assisted secure cooperative network in the presence of an eavesdropper. We consider a practical phase model where both phase shift and reflection amplitude are discrete variables to vary the reflection coefficients of the IRS. Furthermore, we introduce the buffer-aided relay to enhance the secrecy performance, but the use of the buffer leads to the cost of delay. Thus, we aim to maximize either the average secrecy rate with a delay constraint or the throughput with both delay and secrecy constraints, by jointly optimizing the buffer-aided relay selection and the IRS reflection coefficients. To obtain the solution of these two optimization problems, we divide each of the problems into two sub-tasks and then develop a distributed multi-agent reinforcement learning scheme for the two cooperative sub-tasks, each relay node represents an agent in the distributed learning. We apply the distributed reinforcement learning scheme to optimize the IRS reflection coefficients, and then utilize an agent on the source to learn the optimal relay selection based on the optimal IRS reflection coefficients in each iteration. Simulation results show that the proposed learning-based scheme uses an iterative approach to learn from the environment for approximating an optimal solution via the exploration of multiple agents, which outperforms the benchmark schemes
    corecore