4,019 research outputs found

    A Novel Latin Square Image Cipher

    Full text link
    In this paper, we introduce a symmetric-key Latin square image cipher (LSIC) for grayscale and color images. Our contributions to the image encryption community include 1) we develop new Latin square image encryption primitives including Latin Square Whitening, Latin Square S-box and Latin Square P-box ; 2) we provide a new way of integrating probabilistic encryption in image encryption by embedding random noise in the least significant image bit-plane; and 3) we construct LSIC with these Latin square image encryption primitives all on one keyed Latin square in a new loom-like substitution-permutation network. Consequently, the proposed LSIC achieve many desired properties of a secure cipher including a large key space, high key sensitivities, uniformly distributed ciphertext, excellent confusion and diffusion properties, semantically secure, and robustness against channel noise. Theoretical analysis show that the LSIC has good resistance to many attack models including brute-force attacks, ciphertext-only attacks, known-plaintext attacks and chosen-plaintext attacks. Experimental analysis under extensive simulation results using the complete USC-SIPI Miscellaneous image dataset demonstrate that LSIC outperforms or reach state of the art suggested by many peer algorithms. All these analysis and results demonstrate that the LSIC is very suitable for digital image encryption. Finally, we open source the LSIC MATLAB code under webpage https://sites.google.com/site/tuftsyuewu/source-code.Comment: 26 pages, 17 figures, and 7 table

    Agonistic behavior of captive saltwater crocodile, crocodylus porosus in Kota Tinggi, Johor

    Get PDF
    Agonistic behavior in Crocodylus porosus is well known in the wild, but the available data regarding this behavior among the captive individuals especially in a farm setting is rather limited. Studying the aggressive behavior of C. porosus in captivity is important because the data obtained may contribute for conservation and the safety for handlers and visitors. Thus, this study focuses on C. porosus in captivity to describe systematically the agonistic behaviour of C. porosus in relation to feeding time, daytime or night and density per pool. This study was carried out for 35 days in two different ponds. The data was analysed using Pearson’s chi-square analysis to see the relationship between categorical factors. The study shows that C. porosus was more aggressive during daylight, feeding time and non-feeding time in breeding enclosure (Pond C, stock density =0.0369 crocodiles/m2) as compared to non-breeding pond (Pond B, stock density =0.3317 crocodiles/m2) where it is only aggressive during the nighttime. Pond C shows the higher domination in the value of aggression in feeding and non-feeding time where it is related to its function as breeding ground. Chi-square analysis shows that there is no significant difference between ponds (p=0.47, χ2= 2.541, df= 3), thus, there is no relationship between categorical factors. The aggressive behaviour of C. porosus is important for the farm management to evaluate the risk in future for the translocation process and conservation of C. porosus generally

    A New Guess-and-Determine Attack on the A5/1 Stream Cipher

    Get PDF
    In Europe and North America, the most widely used stream cipher to ensure privacy and confidentiality of conversations in GSM mobile phones is the A5/1. In this paper, we present a new attack on the A5/1 stream cipher with an average time complexity of 2^(48.5), which is much less than the brute-force attack with a complexity of 2^(64). The attack has a 100% success rate and requires about 5.65GB storage. We provide a detailed description of our new attack along with its implementation and results.Comment: 14 pages, 4 figures, 3 table

    Stream cipher based on quasigroup string transformations in Zp∗Z_p^*

    Full text link
    In this paper we design a stream cipher that uses the algebraic structure of the multiplicative group \bbbz_p^* (where p is a big prime number used in ElGamal algorithm), by defining a quasigroup of order p−1p-1 and by doing quasigroup string transformations. The cryptographical strength of the proposed stream cipher is based on the fact that breaking it would be at least as hard as solving systems of multivariate polynomial equations modulo big prime number pp which is NP-hard problem and there are no known fast randomized or deterministic algorithms for solving it. Unlikely the speed of known ciphers that work in \bbbz_p^* for big prime numbers pp, the speed of this stream cipher both in encryption and decryption phase is comparable with the fastest symmetric-key stream ciphers.Comment: Small revisions and added reference
    • …
    corecore