14,320 research outputs found

    The Power of Convex Algebras

    Get PDF
    Probabilistic automata (PA) combine probability and nondeterminism. They can be given different semantics, like strong bisimilarity, convex bisimilarity, or (more recently) distribution bisimilarity. The latter is based on the view of PA as transformers of probability distributions, also called belief states, and promotes distributions to first-class citizens. We give a coalgebraic account of the latter semantics, and explain the genesis of the belief-state transformer from a PA. To do so, we make explicit the convex algebraic structure present in PA and identify belief-state transformers as transition systems with state space that carries a convex algebra. As a consequence of our abstract approach, we can give a sound proof technique which we call bisimulation up-to convex hull.Comment: Full (extended) version of a CONCUR 2017 paper, to be submitted to LMC

    Take another little piece of my heart: a note on bridging cognition and emotions

    Get PDF
    Science urges philosophy to be more empirical and philosophy urges science to be more reflective. This markedly occurred along the “discovery of the artificial” (CORDESCHI 2002): in the early days of Cybernetics and Artificial Intelligence (AI) researchers aimed at making machines more cognizant while setting up a framework to better understand human intelligence. By and large, those genuine goals still hold today, whereas AI has become more concerned with specific aspects of intelligence, such as (machine) learning, reasoning, vision, and action. As a matter of fact, the field suffers from a chasm between two formerly integrated aspects. One is the engineering endeavour involving the development of tools, e.g., autonomous systems for driving cars as well as software for semantic information retrieval. The other is the philosophical debate that tries to answer questions concerning the nature of intelligence. Bridging these two levels can indeed be crucial in developing a deeper understanding of minds. An opportunity might be offered by the cogent theme of emotions. Traditionally, computer science, psychological and philosophical research have been compelled to investigate mental processes that do not involve mood, emotions and feelings, in spite of Simon’s early caveat (SIMON 1967) that a general theory of cognition must incorporate the influences of emotion. Given recent neurobiological findings and technological advances, the time is ripe to seriously weigh this promising, albeit controversial, opportunity

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    A short note on Simulation and Abstraction

    Full text link
    This short note is written in celebration of David Schmidt's sixtieth birthday. He has now been active in the program analysis research community for over thirty years and we have enjoyed many interactions with him. His work on characterising simulations between Kripke structures using Galois connections was particularly influential in our own work on using probabilistic abstract interpretation to study Larsen and Skou's notion of probabilistic bisimulation. We briefly review this work and discuss some recent applications of these ideas in a variety of different application areas.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Petri nets for systems and synthetic biology

    Get PDF
    We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which uni¯es the qualita- tive, stochastic and continuous paradigms. Each perspective adds its con- tribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how quali- tative descriptions are abstractions over stochastic or continuous descrip- tions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks

    Behavioural equivalences for timed systems

    Full text link
    Timed transition systems are behavioural models that include an explicit treatment of time flow and are used to formalise the semantics of several foundational process calculi and automata. Despite their relevance, a general mathematical characterisation of timed transition systems and their behavioural theory is still missing. We introduce the first uniform framework for timed behavioural models that encompasses known behavioural equivalences such as timed bisimulations, timed language equivalences as well as their weak and time-abstract counterparts. All these notions of equivalences are naturally organised by their discriminating power in a spectrum. We prove that this result does not depend on the type of the systems under scrutiny: it holds for any generalisation of timed transition system. We instantiate our framework to timed transition systems and their quantitative extensions such as timed probabilistic systems
    corecore