30,957 research outputs found

    Scalable Subspace Methods for Derivative-Free Nonlinear Least-Squares Optimization

    Full text link
    We introduce a general framework for large-scale model-based derivative-free optimization based on iterative minimization within random subspaces. We present a probabilistic worst-case complexity analysis for our method, where in particular we prove high-probability bounds on the number of iterations before a given optimality is achieved. This framework is specialized to nonlinear least-squares problems, with a model-based framework based on the Gauss-Newton method. This method achieves scalability by constructing local linear interpolation models to approximate the Jacobian, and computes new steps at each iteration in a subspace with user-determined dimension. We then describe a practical implementation of this framework, which we call DFBGN. We outline efficient techniques for selecting the interpolation points and search subspace, yielding an implementation that has a low per-iteration linear algebra cost (linear in the problem dimension) while also achieving fast objective decrease as measured by evaluations. Extensive numerical results demonstrate that DFBGN has improved scalability, yielding strong performance on large-scale nonlinear least-squares problems

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra
    corecore