9,138 research outputs found

    Meso-scale FDM material layout design strategies under manufacturability constraints and fracture conditions

    Get PDF
    In the manufacturability-driven design (MDD) perspective, manufacturability of the product or system is the most important of the design requirements. In addition to being able to ensure that complex designs (e.g., topology optimization) are manufacturable with a given process or process family, MDD also helps mechanical designers to take advantage of unique process-material effects generated during manufacturing. One of the most recognizable examples of this comes from the scanning-type family of additive manufacturing (AM) processes; the most notable and familiar member of this family is the fused deposition modeling (FDM) or fused filament fabrication (FFF) process. This process works by selectively depositing uniform, approximately isotropic beads or elements of molten thermoplastic material (typically structural engineering plastics) in a series of pre-specified traces to build each layer of the part. There are many interesting 2-D and 3-D mechanical design problems that can be explored by designing the layout of these elements. The resulting structured, hierarchical material (which is both manufacturable and customized layer-by-layer within the limits of the process and material) can be defined as a manufacturing process-driven structured material (MPDSM). This dissertation explores several practical methods for designing these element layouts for 2-D and 3-D meso-scale mechanical problems, focusing ultimately on design-for-fracture. Three different fracture conditions are explored: (1) cases where a crack must be prevented or stopped, (2) cases where the crack must be encouraged or accelerated, and (3) cases where cracks must grow in a simple pre-determined pattern. Several new design tools, including a mapping method for the FDM manufacturability constraints, three major literature reviews, the collection, organization, and analysis of several large (qualitative and quantitative) multi-scale datasets on the fracture behavior of FDM-processed materials, some new experimental equipment, and the refinement of a fast and simple g-code generator based on commercially-available software, were developed and refined to support the design of MPDSMs under fracture conditions. The refined design method and rules were experimentally validated using a series of case studies (involving both design and physical testing of the designs) at the end of the dissertation. Finally, a simple design guide for practicing engineers who are not experts in advanced solid mechanics nor process-tailored materials was developed from the results of this project.U of I OnlyAuthor's request

    Security and Privacy Problems in Voice Assistant Applications: A Survey

    Full text link
    Voice assistant applications have become omniscient nowadays. Two models that provide the two most important functions for real-life applications (i.e., Google Home, Amazon Alexa, Siri, etc.) are Automatic Speech Recognition (ASR) models and Speaker Identification (SI) models. According to recent studies, security and privacy threats have also emerged with the rapid development of the Internet of Things (IoT). The security issues researched include attack techniques toward machine learning models and other hardware components widely used in voice assistant applications. The privacy issues include technical-wise information stealing and policy-wise privacy breaches. The voice assistant application takes a steadily growing market share every year, but their privacy and security issues never stopped causing huge economic losses and endangering users' personal sensitive information. Thus, it is important to have a comprehensive survey to outline the categorization of the current research regarding the security and privacy problems of voice assistant applications. This paper concludes and assesses five kinds of security attacks and three types of privacy threats in the papers published in the top-tier conferences of cyber security and voice domain.Comment: 5 figure

    Bayesian networks for disease diagnosis: What are they, who has used them and how?

    Full text link
    A Bayesian network (BN) is a probabilistic graph based on Bayes' theorem, used to show dependencies or cause-and-effect relationships between variables. They are widely applied in diagnostic processes since they allow the incorporation of medical knowledge to the model while expressing uncertainty in terms of probability. This systematic review presents the state of the art in the applications of BNs in medicine in general and in the diagnosis and prognosis of diseases in particular. Indexed articles from the last 40 years were included. The studies generally used the typical measures of diagnostic and prognostic accuracy: sensitivity, specificity, accuracy, precision, and the area under the ROC curve. Overall, we found that disease diagnosis and prognosis based on BNs can be successfully used to model complex medical problems that require reasoning under conditions of uncertainty.Comment: 22 pages, 5 figures, 1 table, Student PhD first pape

    Self-Supervised Learning to Prove Equivalence Between Straight-Line Programs via Rewrite Rules

    Full text link
    We target the problem of automatically synthesizing proofs of semantic equivalence between two programs made of sequences of statements. We represent programs using abstract syntax trees (AST), where a given set of semantics-preserving rewrite rules can be applied on a specific AST pattern to generate a transformed and semantically equivalent program. In our system, two programs are equivalent if there exists a sequence of application of these rewrite rules that leads to rewriting one program into the other. We propose a neural network architecture based on a transformer model to generate proofs of equivalence between program pairs. The system outputs a sequence of rewrites, and the validity of the sequence is simply checked by verifying it can be applied. If no valid sequence is produced by the neural network, the system reports the programs as non-equivalent, ensuring by design no programs may be incorrectly reported as equivalent. Our system is fully implemented for a given grammar which can represent straight-line programs with function calls and multiple types. To efficiently train the system to generate such sequences, we develop an original incremental training technique, named self-supervised sample selection. We extensively study the effectiveness of this novel training approach on proofs of increasing complexity and length. Our system, S4Eq, achieves 97% proof success on a curated dataset of 10,000 pairs of equivalent programsComment: 30 pages including appendi

    Neural Architecture Search: Insights from 1000 Papers

    Full text link
    In the past decade, advances in deep learning have resulted in breakthroughs in a variety of areas, including computer vision, natural language understanding, speech recognition, and reinforcement learning. Specialized, high-performing neural architectures are crucial to the success of deep learning in these areas. Neural architecture search (NAS), the process of automating the design of neural architectures for a given task, is an inevitable next step in automating machine learning and has already outpaced the best human-designed architectures on many tasks. In the past few years, research in NAS has been progressing rapidly, with over 1000 papers released since 2020 (Deng and Lindauer, 2021). In this survey, we provide an organized and comprehensive guide to neural architecture search. We give a taxonomy of search spaces, algorithms, and speedup techniques, and we discuss resources such as benchmarks, best practices, other surveys, and open-source libraries

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Preferentialism and the conditionality of trade agreements. An application of the gravity model

    Get PDF
    Modern economic growth is driven by international trade, and the preferential trade agreement constitutes the primary fit-for-purpose mechanism of choice for establishing, facilitating, and governing its flows. However, too little attention has been afforded to the differences in content and conditionality associated with different trade agreements. This has led to an under-considered mischaracterisation of the design-flow relationship. Similarly, while the relationship between trade facilitation and trade is clear, the way trade facilitation affects other areas of economic activity, with respect to preferential trade agreements, has received considerably less attention. Particularly, in light of an increasingly globalised and interdependent trading system, the interplay between trade facilitation and foreign direct investment is of particular importance. Accordingly, this thesis explores the bilateral trade and investment effects of specific conditionality sets, as established within Preferential Trade Agreements (PTAs). Chapter one utilises recent content condition-indexes for depth, flexibility, and constraints on flexibility, established by Dür et al. (2014) and Baccini et al. (2015), within a gravity framework to estimate the average treatment effect of trade agreement characteristics across bilateral trade relationships in the Association of Southeast Asian Nations (ASEAN) from 1948-2015. This chapter finds that the composition of a given ASEAN trade agreement’s characteristic set has significantly determined the concomitant bilateral trade flows. Conditions determining the classification of a trade agreements depth are positively associated with an increase to bilateral trade; hereby representing the furthered removal of trade barriers and frictions as facilitated by deeper trade agreements. Flexibility conditions, and constraint on flexibility conditions, are also identified as significant determiners for a given trade agreement’s treatment effect of subsequent bilateral trade flows. Given the political nature of their inclusion (i.e., the appropriate address to short term domestic discontent) this influence is negative as regards trade flows. These results highlight the longer implementation and time frame requirements for trade impediments to be removed in a market with higher domestic uncertainty. Chapter two explores the incorporation of non-trade issue (NTI) conditions in PTAs. Such conditions are increasing both at the intensive and extensive margins. There is a concern from developing nations that this growth of NTI inclusions serves as a way for high-income (HI) nations to dictate the trade agenda, such that developing nations are subject to ‘principled protectionism’. There is evidence that NTI provisions are partly driven by protectionist motives but the effect on trade flows remains largely undiscussed. Utilising the Gravity Model for trade, I test Lechner’s (2016) comprehensive NTI dataset for 202 bilateral country pairs across a 32-year timeframe and find that, on average, NTIs are associated with an increase to bilateral trade. Primarily this boost can be associated with the market access that a PTA utilising NTIs facilitates. In addition, these results are aligned theoretically with the discussions on market harmonisation, shared values, and the erosion of artificial production advantages. Instead of inhibiting trade through burdensome cost, NTIs are acting to support a more stable production and trading environment, motivated by enhanced market access. Employing a novel classification to capture the power supremacy associated with shaping NTIs, this chapter highlights that the positive impact of NTIs is largely driven by the relationship between HI nations and middle-to-low-income (MTLI) counterparts. Chapter Three employs the gravity model, theoretically augmented for foreign direct investment (FDI), to estimate the effects of trade facilitation conditions utilising indexes established by Neufeld (2014) and the bilateral FDI data curated by UNCTAD (2014). The resultant dataset covers 104 countries, covering a period of 12 years (2001–2012), containing 23,640 observations. The results highlight the bilateral-FDI enhancing effects of trade facilitation conditions in the ASEAN context, aligning itself with the theoretical branch of FDI-PTA literature that has outlined how the ratification of a trade agreement results in increased and positive economic prospect between partners (Medvedev, 2012) resulting from the interrelation between trade and investment as set within an improving regulatory environment. The results align with the expectation that an enhanced trade facilitation landscape (one in which such formalities, procedures, information, and expectations around trade facilitation are conditioned for) is expected to incentivise and attract FDI

    Data-to-text generation with neural planning

    Get PDF
    In this thesis, we consider the task of data-to-text generation, which takes non-linguistic structures as input and produces textual output. The inputs can take the form of database tables, spreadsheets, charts, and so on. The main application of data-to-text generation is to present information in a textual format which makes it accessible to a layperson who may otherwise find it problematic to understand numerical figures. The task can also automate routine document generation jobs, thus improving human efficiency. We focus on generating long-form text, i.e., documents with multiple paragraphs. Recent approaches to data-to-text generation have adopted the very successful encoder-decoder architecture or its variants. These models generate fluent (but often imprecise) text and perform quite poorly at selecting appropriate content and ordering it coherently. This thesis focuses on overcoming these issues by integrating content planning with neural models. We hypothesize data-to-text generation will benefit from explicit planning, which manifests itself in (a) micro planning, (b) latent entity planning, and (c) macro planning. Throughout this thesis, we assume the input to our generator are tables (with records) in the sports domain. And the output are summaries describing what happened in the game (e.g., who won/lost, ..., scored, etc.). We first describe our work on integrating fine-grained or micro plans with data-to-text generation. As part of this, we generate a micro plan highlighting which records should be mentioned and in which order, and then generate the document while taking the micro plan into account. We then show how data-to-text generation can benefit from higher level latent entity planning. Here, we make use of entity-specific representations which are dynam ically updated. The text is generated conditioned on entity representations and the records corresponding to the entities by using hierarchical attention at each time step. We then combine planning with the high level organization of entities, events, and their interactions. Such coarse-grained macro plans are learnt from data and given as input to the generator. Finally, we present work on making macro plans latent while incrementally generating a document paragraph by paragraph. We infer latent plans sequentially with a structured variational model while interleaving the steps of planning and generation. Text is generated by conditioning on previous variational decisions and previously generated text. Overall our results show that planning makes data-to-text generation more interpretable, improves the factuality and coherence of the generated documents and re duces redundancy in the output document

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Annals [...].

    Get PDF
    Pedometrics: innovation in tropics; Legacy data: how turn it useful?; Advances in soil sensing; Pedometric guidelines to systematic soil surveys.Evento online. Coordenado por: Waldir de Carvalho Junior, Helena Saraiva Koenow Pinheiro, Ricardo Simão Diniz Dalmolin
    • …
    corecore