6,936 research outputs found

    Probabilistic Analysis of Abnormal Behaviour Detection in Activities of Daily Living

    Get PDF
    This paper presents a probabilistic approach for the identification of abnormal behaviour in Activities of Daily Living (ADLs) from sensor data collected from 30 participants. The ADLs considered are: (i) preparing and drinking tea, and (ii) preparing and drinking coffee. Abnormal behaviour identified in the context of these activities can be an indicator of a progressive health problem or the occurrence of a hazardous incident. The approach presented considers the temporal aspect of the sequences of actions that are part of each ADL and that vary between participants. The average and standard deviation for the durations of each action were calculated to define an average time and a range in which a behaviour could be considered as normal for each stage and activity. The Cumulative Distribution Function (CDF) was used to obtain the probabilities of abnormal behaviours related to the early and late completion of activities and stages within an activity. The data analysis show that CDF can provide accurate and reliable results regarding the presence of abnormal behaviour in stages and activities that last over a minute. Finally, this approach could be used to train machine learning algorithms for the abnormal behaviour detection

    Probabilistic Analysis of Temporal and Sequential Aspects of Activities of Daily Living for Abnormal Behaviour Detection

    Get PDF
    This paper presents a probabilistic approach for the identification of abnormal behaviour in Activities of Daily Living (ADLs) from dense sensor data collected from 30 participants. The ADLs considered are related to preparing and drinking (i) tea, and (ii) coffee. Abnormal behaviour identified in the context of these activities can be an indicator of a progressive health problem or the occurrence of a hazardous incident. The approach presented considers the temporal and sequential aspects of the actions that are part of each ADL and that vary between participants. The average and standard deviation for the duration and number of steps of each activity are calculated to define the average time and steps and a range within which a behaviour could be considered as normal for each stage and activity. The Cumulative Distribution Function (CDF) is used to obtain the probabilities of abnormal behaviours related to the early and late completion of activities and stages within an activity in terms of time and steps. Analysis shows that CDF can provide precise and reliable results regarding the presence of abnormal behaviour in stages and activities that last over a minute or consist of many steps. Finally, this approach could be used to train machine learning algorithms for abnormal behaviour detection.status: publishe

    An intelligent information forwarder for healthcare big data systems with distributed wearable sensors

    Get PDF
    © 2016 IEEE. An increasing number of the elderly population wish to live an independent lifestyle, rather than rely on intrusive care programmes. A big data solution is presented using wearable sensors capable of carrying out continuous monitoring of the elderly, alerting the relevant caregivers when necessary and forwarding pertinent information to a big data system for analysis. A challenge for such a solution is the development of context-awareness through the multidimensional, dynamic and nonlinear sensor readings that have a weak correlation with observable human behaviours and health conditions. To address this challenge, a wearable sensor system with an intelligent data forwarder is discussed in this paper. The forwarder adopts a Hidden Markov Model for human behaviour recognition. Locality sensitive hashing is proposed as an efficient mechanism to learn sensor patterns. A prototype solution is implemented to monitor health conditions of dispersed users. It is shown that the intelligent forwarders can provide the remote sensors with context-awareness. They transmit only important information to the big data server for analytics when certain behaviours happen and avoid overwhelming communication and data storage. The system functions unobtrusively, whilst giving the users peace of mind in the knowledge that their safety is being monitored and analysed

    Human behavioural analysis with self-organizing map for ambient assisted living

    Get PDF
    This paper presents a system for automatically classifying the resting location of a moving object in an indoor environment. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a low-cost, low-power automated home-based surveillance system, capable of monitoring activity level of elders living alone independently. The proposed system runs on an embedded platform with a specialised ceiling-mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels and to detect specific events such as potential falls. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). A novel edge-based object detection algorithm capable of running at a reasonable speed on the embedded platform has been developed. The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 20% classification error, showing the robustness of our approach over others in literature with minimal power consumption. The head location of the subject is also estimated by a novel approach capable of running on any resource limited platform with power constraints

    Unsupervised routine discovery in egocentric photo-streams

    Full text link
    The routine of a person is defined by the occurrence of activities throughout different days, and can directly affect the person's health. In this work, we address the recognition of routine related days. To do so, we rely on egocentric images, which are recorded by a wearable camera and allow to monitor the life of the user from a first-person view perspective. We propose an unsupervised model that identifies routine related days, following an outlier detection approach. We test the proposed framework over a total of 72 days in the form of photo-streams covering around 2 weeks of the life of 5 different camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted F-Score for all the users. Thus, we show that our framework is able to recognise routine related days and opens the door to the understanding of the behaviour of people

    Behavior analysis for aging-in-place using similarity heatmaps

    Get PDF
    The demand for healthcare services for an increasing population of older adults is faced with the shortage of skilled caregivers and a constant increase in healthcare costs. In addition, the strong preference of the elderly to live independently has been driving much research on "ambient-assisted living" (AAL) systems to support aging-in-place. In this paper, we propose to employ a low-resolution image sensor network for behavior analysis of a home occupant. A network of 10 low-resolution cameras (30x30 pixels) is installed in a service flat of an elderly, based on which the user's mobility tracks are extracted using a maximum likelihood tracker. We propose a novel measure to find similar patterns of behavior between each pair of days from the user's detected positions, based on heatmaps and Earth mover's distance (EMD). Then, we use an exemplar-based approach to identify sleeping, eating, and sitting activities, and walking patterns of the elderly user for two weeks of real-life recordings. The proposed system achieves an overall accuracy of about 94%

    Interoperable services based on activity monitoring in ambient assisted living environments

    Get PDF
    Ambient Assisted Living (AAL) is considered as the main technological solution that will enable the aged and people in recovery to maintain their independence and a consequent high quality of life for a longer period of time than would otherwise be the case. This goal is achieved by monitoring human’s activities and deploying the appropriate collection of services to set environmental features and satisfy user preferences in a given context. However, both human monitoring and services deployment are particularly hard to accomplish due to the uncertainty and ambiguity characterising human actions, and heterogeneity of hardware devices composed in an AAL system. This research addresses both the aforementioned challenges by introducing 1) an innovative system, based on Self Organising Feature Map (SOFM), for automatically classifying the resting location of a moving object in an indoor environment and 2) a strategy able to generate context-aware based Fuzzy Markup Language (FML) services in order to maximize the users’ comfort and hardware interoperability level. The overall system runs on a distributed embedded platform with a specialised ceiling- mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels, to detect specific events such as potential falls and to deploy the right sequence of fuzzy services modelled through FML for supporting people in that particular context. Experimental results show less than 20% classification error in monitoring human activities and providing the right set of services, showing the robustness of our approach over others in literature with minimal power consumption
    corecore