4,470 research outputs found

    zCap: a zero configuration adaptive paging and mobility management mechanism

    Get PDF
    Today, cellular networks rely on fixed collections of cells (tracking areas) for user equipment localisation. Locating users within these areas involves broadcast search (paging), which consumes radio bandwidth but reduces the user equipment signalling required for mobility management. Tracking areas are today manually configured, hard to adapt to local mobility and influence the load on several key resources in the network. We propose a decentralised and self-adaptive approach to mobility management based on a probabilistic model of local mobility. By estimating the parameters of this model from observations of user mobility collected online, we obtain a dynamic model from which we construct local neighbourhoods of cells where we are most likely to locate user equipment. We propose to replace the static tracking areas of current systems with neighbourhoods local to each cell. The model is also used to derive a multi-phase paging scheme, where the division of neighbourhood cells into consecutive phases balances response times and paging cost. The complete mechanism requires no manual tracking area configuration and performs localisation efficiently in terms of signalling and response times. Detailed simulations show that significant potential gains in localisation effi- ciency are possible while eliminating manual configuration of mobility management parameters. Variants of the proposal can be implemented within current (LTE) standards

    Mortality modelling and forecasting: a review of methods

    Get PDF

    Long-term adaptation and distributed detection of local network changes

    Get PDF
    We present a statistical approach to distributed detection of local latency shifts in networked systems. For this purpose, response delay measurements are performed between neighbouring nodes via probing. The expected probe response delay on each connection is statistically modelled via parameter estimation. Adaptation to drifting delays is accounted for by the use of overlapping models, such that previous models are partially used as input to future models. Based on the symmetric Kullback-Leibler divergence metric, latency shifts can be detected by comparing the estimated parameters of the current and previous models. In order to reduce the number of detection alarms, thresholds for divergence and convergence are used. The method that we propose can be applied to many types of statistical distributions, and requires only constant memory compared to e.g., sliding window techniques and decay functions. Therefore, the method is applicable in various kinds of network equipment with limited capacity, such as sensor networks, mobile ad hoc networks etc. We have investigated the behaviour of the method for different model parameters. Further, we have tested the detection performance in network simulations, for both gradual and abrupt shifts in the probe response delay. The results indicate that over 90% of the shifts can be detected. Undetected shifts are mainly the effects of long convergence processes triggered by previous shifts. The overall performance depends on the characteristics of the shifts and the configuration of the model parameters

    Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models

    Get PDF
    This tutorial provides a gentle introduction to the particle Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear state-space models together with a software implementation in the statistical programming language R. We employ a step-by-step approach to develop an implementation of the PMH algorithm (and the particle filter within) together with the reader. This final implementation is also available as the package pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some intuition as to how the algorithm operates and discuss some solutions to problems that might occur in practice. To illustrate the use of PMH, we consider parameter inference in a linear Gaussian state-space model with synthetic data and a nonlinear stochastic volatility model with real-world data.Comment: 41 pages, 7 figures. In press for Journal of Statistical Software. Source code for R, Python and MATLAB available at: https://github.com/compops/pmh-tutoria

    Probabilistic Graphical Model Representation in Phylogenetics

    Get PDF
    Recent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (1) reproducibility of an analysis, (2) model development and (3) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and non-specialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies. Graphical modeling is a unifying framework that has gained in popularity in the statistical literature in recent years. The core idea is to break complex models into conditionally independent distributions. The strength lies in the comprehensibility, flexibility, and adaptability of this formalism, and the large body of computational work based on it. Graphical models are well-suited to teach statistical models, to facilitate communication among phylogeneticists and in the development of generic software for simulation and statistical inference. Here, we provide an introduction to graphical models for phylogeneticists and extend the standard graphical model representation to the realm of phylogenetics. We introduce a new graphical model component, tree plates, to capture the changing structure of the subgraph corresponding to a phylogenetic tree. We describe a range of phylogenetic models using the graphical model framework and introduce modules to simplify the representation of standard components in large and complex models. Phylogenetic model graphs can be readily used in simulation, maximum likelihood inference, and Bayesian inference using, for example, Metropolis-Hastings or Gibbs sampling of the posterior distribution

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Methods for Amharic part-of-speech tagging

    Get PDF
    The paper describes a set of experiments involving the application of three state-of- the-art part-of-speech taggers to Ethiopian Amharic, using three different tagsets. The taggers showed worse performance than previously reported results for Eng- lish, in particular having problems with unknown words. The best results were obtained using a Maximum Entropy ap- proach, while HMM-based and SVM- based taggers got comparable results
    corecore