2,205 research outputs found

    Interfaces between operations research and computer science

    Get PDF

    The dynamic vehicle routing problem

    Get PDF

    A Vehicle Routing Problem with Multiple Service Agreements

    Get PDF
    We consider a logistics service provider which arranges transportation services to customers with different service agreements. The most prominent feature of this service agreement is the time period in which these customers send their orders and want to retrieve delivery information. After customers place their orders, they require information about the driver and an early indication of the arrival times. At the moment, this information needs to be provided. The order information of other customers with a different service agreement that needs to be serviced in the same period might still be unknown. Ultimately all customers have to be planned, constrained by the information provided to the customers in the earlier stage. In this paper, we investigate how the logistic service provider plans its routes and communicates the driver and arrival time information in the phase where not all customers are known (stage 1). Once all customer orders are known (stage 2), the final routes can be determined, which adhere to the already communicated driver and arrival time information from stage 1, minimizing total routing cost. For this problem, an exact algorithm is presented. This problem is solved using a novel tractable branch-and-bound method and re-optimization in stage 2. Detailed results are presented, showing the improvements of using re-optimization. We show that integrating the planning of the customers with the different service agreements leads to significant cost savings compared to treating the customers separately (as is currently done by most logistics service providers).</p

    A Heuristic Approach to the Theater Distribution Problem

    Get PDF
    Analysts at USTRANSCOM are tasked with providing vehicle mixtures that will support the distribution of requirements as provided in the form of TPFDD. An integer programming model exists to search for optimal solutions to these problems, but it is fairly time consuming, and produces only one of potentially several good quality solutions. This research constructs a number of heuristic approaches to solving the TDP. Two distinct shipping methods are examined and applied through both constructive and probabilistic vehicle assignment processes. Multistart metaheuristic approaches are designed and used in conjunction with the constructive and probabilistic approaches. Random TPFDDs of size 20, 100 and 1000 are tested, and solutions are compared to those obtained by the integer programming approach. The heuristic models implemented in this research develop feasible solutions to the notional TPFDDs in less time than the integer program. They can very quickly identify a number of good quality solutions to the same problem

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Towards an IT-based Planning Process Alignment: Integrated Route and Location Planning for Small Package Shippers

    Get PDF
    To increase the efficiency of delivery operations in small package shipping (SPS), numerous optimization models for routeand location planning decisions have been proposed. This operations research view of defining independent problems hastwo major shortcomings: First, most models from literature neglect crucial real-world characteristics, thus making themuseless for small package shippers. Second, business processes for strategic decision making are not well-structured in mostSPS companies and significant cost savings could be generated by an IT-based support infrastructure integrating decisionmaking and planning across the mutually dependent layers of strategic, tactical and operational planning. We present anintegrated planning framework that combines an intelligent data analysis tool, which identifies delivery patterns and changesin customer demand, with location and route planning tools. Our planning approaches extend standard Location Routing andVehicle Routing models by crucial, practically relevant characteristics like the existence of subcontractors on both decisionlevels and the implicit consideration of driver familiarity in route planning

    Dynamic Vehicle Routing for Robotic Systems

    Get PDF
    Recent years have witnessed great advancements in the science and technology of autonomy, robotics, and networking. This paper surveys recent concepts and algorithms for dynamic vehicle routing (DVR), that is, for the automatic planning of optimal multivehicle routes to perform tasks that are generated over time by an exogenous process. We consider a rich variety of scenarios relevant for robotic applications. We begin by reviewing the basic DVR problem: demands for service arrive at random locations at random times and a vehicle travels to provide on-site service while minimizing the expected wait time of the demands. Next, we treat different multivehicle scenarios based on different models for demands (e.g., demands with different priority levels and impatient demands), vehicles (e.g., motion constraints, communication, and sensing capabilities), and tasks. The performance criterion used in these scenarios is either the expected wait time of the demands or the fraction of demands serviced successfully. In each specific DVR scenario, we adopt a rigorous technical approach that relies upon methods from queueing theory, combinatorial optimization, and stochastic geometry. First, we establish fundamental limits on the achievable performance, including limits on stability and quality of service. Second, we design algorithms, and provide provable guarantees on their performance with respect to the fundamental limits.United States. Air Force Office of Scientific Research (Award FA 8650-07-2-3744)United States. Army Research Office. Multidisciplinary University Research Initiative (Award W911NF-05-1-0219)National Science Foundation (U.S.) (Award ECCS-0705451)National Science Foundation (U.S.) (Award CMMI-0705453)United States. Army Research Office (Award W911NF-11-1-0092

    A simheuristic algorithm for time-dependent waste collection management with stochastic travel times

    Get PDF
    A major operational task in city logistics is related to waste collection. Due to large problem sizes and numerous constraints, the optimization of real-life waste collection problems on a daily basis requires the use of metaheuristic solving frameworks to generate near-optimal collection routes in low computation times. This paper presents a simheuristic algorithm for the time-dependent waste collection problem with stochastic travel times. By combining Monte Carlo simulation with a biased randomized iterated local search metaheuristic, time-varying and stochastic travel speeds between different network nodes are accounted for. The algorithm is tested using real instances in a medium-sized city in Spain
    corecore