1,121 research outputs found

    Hybrid PDE solver for data-driven problems and modern branching

    Full text link
    The numerical solution of large-scale PDEs, such as those occurring in data-driven applications, unavoidably require powerful parallel computers and tailored parallel algorithms to make the best possible use of them. In fact, considerations about the parallelization and scalability of realistic problems are often critical enough to warrant acknowledgement in the modelling phase. The purpose of this paper is to spread awareness of the Probabilistic Domain Decomposition (PDD) method, a fresh approach to the parallelization of PDEs with excellent scalability properties. The idea exploits the stochastic representation of the PDE and its approximation via Monte Carlo in combination with deterministic high-performance PDE solvers. We describe the ingredients of PDD and its applicability in the scope of data science. In particular, we highlight recent advances in stochastic representations for nonlinear PDEs using branching diffusions, which have significantly broadened the scope of PDD. We envision this work as a dictionary giving large-scale PDE practitioners references on the very latest algorithms and techniques of a non-standard, yet highly parallelizable, methodology at the interface of deterministic and probabilistic numerical methods. We close this work with an invitation to the fully nonlinear case and open research questions.Comment: 23 pages, 7 figures; Final SMUR version; To appear in the European Journal of Applied Mathematics (EJAM

    Layer methods for stochastic Navier–Stokes equations using simplest characteristics

    Get PDF
    We propose and study a layer method for stochastic Navier-Stokes equations (SNSE) with spatial periodic boundary conditions and additive noise. The method is constructed using conditional probabilistic representations of solutions to SNSE and exploiting ideas of the weak sense numerical integration of stochastic differential equations. We prove some convergence results for the proposed method including its first mean-square order. Results of numerical experiments on two model problems are presented

    p-Adic Mathematical Physics

    Full text link
    A brief review of some selected topics in p-adic mathematical physics is presented.Comment: 36 page

    A forward--backward stochastic algorithm for quasi-linear PDEs

    Get PDF
    We propose a time-space discretization scheme for quasi-linear parabolic PDEs. The algorithm relies on the theory of fully coupled forward--backward SDEs, which provides an efficient probabilistic representation of this type of equation. The derivated algorithm holds for strong solutions defined on any interval of arbitrary length. As a bypass product, we obtain a discretization procedure for the underlying FBSDE. In particular, our work provides an alternative to the method described in [Douglas, Ma and Protter (1996) Ann. Appl. Probab. 6 940--968] and weakens the regularity assumptions required in this reference.Comment: Published at http://dx.doi.org/10.1214/105051605000000674 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    06391 Abstracts Collection -- Algorithms and Complexity for Continuous Problems

    Get PDF
    From 24.09.06 to 29.09.06, the Dagstuhl Seminar 06391 ``Algorithms and Complexity for Continuous Problems\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • 

    corecore