27,327 research outputs found

    Estimating the Algorithmic Complexity of Stock Markets

    Full text link
    Randomness and regularities in Finance are usually treated in probabilistic terms. In this paper, we develop a completely different approach in using a non-probabilistic framework based on the algorithmic information theory initially developed by Kolmogorov (1965). We present some elements of this theory and show why it is particularly relevant to Finance, and potentially to other sub-fields of Economics as well. We develop a generic method to estimate the Kolmogorov complexity of numeric series. This approach is based on an iterative "regularity erasing procedure" implemented to use lossless compression algorithms on financial data. Examples are provided with both simulated and real-world financial time series. The contributions of this article are twofold. The first one is methodological : we show that some structural regularities, invisible with classical statistical tests, can be detected by this algorithmic method. The second one consists in illustrations on the daily Dow-Jones Index suggesting that beyond several well-known regularities, hidden structure may in this index remain to be identified

    Curriculum Guidelines for Undergraduate Programs in Data Science

    Get PDF
    The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science

    A Complete Theory of Everything (will be subjective)

    Full text link
    Increasingly encompassing models have been suggested for our world. Theories range from generally accepted to increasingly speculative to apparently bogus. The progression of theories from ego- to geo- to helio-centric models to universe and multiverse theories and beyond was accompanied by a dramatic increase in the sizes of the postulated worlds, with humans being expelled from their center to ever more remote and random locations. Rather than leading to a true theory of everything, this trend faces a turning point after which the predictive power of such theories decreases (actually to zero). Incorporating the location and other capacities of the observer into such theories avoids this problem and allows to distinguish meaningful from predictively meaningless theories. This also leads to a truly complete theory of everything consisting of a (conventional objective) theory of everything plus a (novel subjective) observer process. The observer localization is neither based on the controversial anthropic principle, nor has it anything to do with the quantum-mechanical observation process. The suggested principle is extended to more practical (partial, approximate, probabilistic, parametric) world models (rather than theories of everything). Finally, I provide a justification of Ockham's razor, and criticize the anthropic principle, the doomsday argument, the no free lunch theorem, and the falsifiability dogma.Comment: 26 LaTeX page
    corecore