2,103 research outputs found

    Probabilistic 2D Cellular Automata Rules for Binary Classification

    Full text link

    On the decomposition of stochastic cellular automata

    Full text link
    In this paper we present two interesting properties of stochastic cellular automata that can be helpful in analyzing the dynamical behavior of such automata. The first property allows for calculating cell-wise probability distributions over the state set of a stochastic cellular automaton, i.e. images that show the average state of each cell during the evolution of the stochastic cellular automaton. The second property shows that stochastic cellular automata are equivalent to so-called stochastic mixtures of deterministic cellular automata. Based on this property, any stochastic cellular automaton can be decomposed into a set of deterministic cellular automata, each of which contributes to the behavior of the stochastic cellular automaton.Comment: Submitted to Journal of Computation Science, Special Issue on Cellular Automata Application

    Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density

    Full text link
    We investigate the sensitivity of the composite cellular automaton of H. Fuk\'{s} [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.Comment: Typeset in REVTeX 4.1, 5 pages, 5 figures, 2 tables, 1 appendix. Version v2 corresponds to the published version of the manuscrip

    A Graph Theory Approach for Regional Controllability of Boolean Cellular Automata

    Full text link
    Controllability is one of the central concepts of modern control theory that allows a good understanding of a system's behaviour. It consists in constraining a system to reach the desired state from an initial state within a given time interval. When the desired objective affects only a sub-region of the domain, the control is said to be regional. The purpose of this paper is to study a particular case of regional control using cellular automata models since they are spatially extended systems where spatial properties can be easily defined thanks to their intrinsic locality. We investigate the case of boundary controls on the target region using an original approach based on graph theory. Necessary and sufficient conditions are given based on the Hamiltonian Circuit and strongly connected component. The controls are obtained using a preimage approach

    Response Curves and Preimage Sequences of Two-Dimensional Cellular Automata

    Full text link
    We consider the problem of finding response curves for a class of binary two-dimensional cellular automata with LL-shaped neighbourhood. We show that the dependence of the density of ones after an arbitrary number of iterations, on the initial density of ones, can be calculated for a fairly large number of rules by considering preimage sets. We provide several examples and a summary of all known results. We consider a special case of initial density equal to 0.5 for other rules and compute explicitly the density of ones after nn iterations of the rule. This analysis includes surjective rules, which in the case of LL-shaped neighbourhood are all found to be permutive. We conclude with the observation that all rules for which preimage curves can be computed explicitly are either finite or asymptotic emulators of identity or shift.Comment: 7 pages, 3 figure
    • …
    corecore