576 research outputs found

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    A review on green caching strategies for next generation communication networks

    Get PDF
    © 2020 IEEE. In recent years, the ever-increasing demand for networking resources and energy, fueled by the unprecedented upsurge in Internet traffic, has been a cause for concern for many service providers. Content caching, which serves user requests locally, is deemed to be an enabling technology in addressing the challenges offered by the phenomenal growth in Internet traffic. Conventionally, content caching is considered as a viable solution to alleviate the backhaul pressure. However, recently, many studies have reported energy cost reductions contributed by content caching in cache-equipped networks. The hypothesis is that caching shortens content delivery distance and eventually achieves significant reduction in transmission energy consumption. This has motivated us to conduct this study and in this article, a comprehensive survey of the state-of-the-art green caching techniques is provided. This review paper extensively discusses contributions of the existing studies on green caching. In addition, the study explores different cache-equipped network types, solution methods, and application scenarios. We categorically present that the optimal selection of the caching nodes, smart resource management, popular content selection, and renewable energy integration can substantially improve energy efficiency of the cache-equipped systems. In addition, based on the comprehensive analysis, we also highlight some potential research ideas relevant to green content caching

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Service Provisioning in Edge-Cloud Continuum Emerging Applications for Mobile Devices

    Get PDF
    Disruptive applications for mobile devices can be enhanced by Edge computing facilities. In this context, Edge Computing (EC) is a proposed architecture to meet the mobility requirements imposed by these applications in a wide range of domains, such as the Internet of Things, Immersive Media, and Connected and Autonomous Vehicles. EC architecture aims to introduce computing capabilities in the path between the user and the Cloud to execute tasks closer to where they are consumed, thus mitigating issues related to latency, context awareness, and mobility support. In this survey, we describe which are the leading technologies to support the deployment of EC infrastructure. Thereafter, we discuss the applications that can take advantage of EC and how they were proposed in the literature. Finally, after examining enabling technologies and related applications, we identify some open challenges to fully achieve the potential of EC, and also research opportunities on upcoming paradigms for service provisioning. This survey is a guide to comprehend the recent advances on the provisioning of mobile applications, as well as foresee the expected next stages of evolution for these applications

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Mobility-aware Software-Defined Service-Centric Networking for Service Provisioning in Urban Environments

    Get PDF
    Disruptive applications for mobile devices, such as the Internet of Things, Connected and Autonomous Vehicles, Immersive Media, and others, have requirements that the current Cloud Computing paradigm cannot meet. These unmet requirements bring the necessity to deploy geographically distributed computing architectures, such as Fog and Mobile Edge Computing. However, bringing computing close to users has its costs. One example of cost is the complexity introduced by the management of the mobility of the devices at the edge. This mobility may lead to issues, such as interruption of the communication with service instances hosted at the edge or an increase in communication latency during mobility events, e.g., handover. These issues, caused by the lack of mobility-aware service management solutions, result in degradation in service provisioning. The present thesis proposes a series of protocols and algorithms to handle user and service mobility at the edge of the network. User mobility is characterized when user change access points of wireless networks, while service mobility happens when services have to be provisioned from different hosts. It assembles them in a solution for mobility-aware service orchestration based on Information-Centric Networking (ICN) and runs on top of Software-Defined Networking (SDN). This solution addresses three issues related to handling user mobility at the edge: (i) proactive support for user mobility events, (ii) service instance addressing management, and (iii) distributed application state data management. For (i), we propose a proactive SDN-based handover scheme. For (ii), we propose an ICN addressing strategy to remove the necessity of updating addresses after service mobility events. For (iii), we propose a graph-based framework for state data placement in the network nodes that accounts for user mobility and latency requirements. The protocols and algorithms proposed in this thesis were compared with different approaches from the literature through simulation. Our results show that the proposed solution can reduce service interruption and latency in the presence of user and service mobility events while maintaining reasonable overhead costs regarding control messages sent in the network by the SDN controller

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions
    corecore