912 research outputs found

    Thermal Management for Dependable On-Chip Systems

    Get PDF
    This thesis addresses the dependability issues in on-chip systems from a thermal perspective. This includes an explanation and analysis of models to show the relationship between dependability and tempature. Additionally, multiple novel methods for on-chip thermal management are introduced aiming to optimize thermal properties. Analysis of the methods is done through simulation and through infrared thermal camera measurements

    An Artificial Neural Networks based Temperature Prediction Framework for Network-on-Chip based Multicore Platform

    Get PDF
    Continuous improvement in silicon process technologies has made possible the integration of hundreds of cores on a single chip. However, power and heat have become dominant constraints in designing these massive multicore chips causing issues with reliability, timing variations and reduced lifetime of the chips. Dynamic Thermal Management (DTM) is a solution to avoid high temperatures on the die. Typical DTM schemes only address core level thermal issues. However, the Network-on-chip (NoC) paradigm, which has emerged as an enabling methodology for integrating hundreds to thousands of cores on the same die can contribute significantly to the thermal issues. Moreover, the typical DTM is triggered reactively based on temperature measurements from on-chip thermal sensor requiring long reaction times whereas predictive DTM method estimates future temperature in advance, eliminating the chance of temperature overshoot. Artificial Neural Networks (ANNs) have been used in various domains for modeling and prediction with high accuracy due to its ability to learn and adapt. This thesis concentrates on designing an ANN prediction engine to predict the thermal profile of the cores and Network-on-Chip elements of the chip. This thermal profile of the chip is then used by the predictive DTM that combines both core level and network level DTM techniques. On-chip wireless interconnect which is recently envisioned to enable energy-efficient data exchange between cores in a multicore environment, will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM schemes

    Combined Dynamic Thermal Management Exploiting Broadcast-Capable Wireless Network-on-Chip Architecture

    Get PDF
    With the continuous scaling of device dimensions, the number of cores on a single die is constantly increasing. This integration of hundreds of cores on a single die leads to high power dissipation and thermal issues in modern Integrated Circuits (ICs). This causes problems related to reliability, timing violations and lifetime of electronic devices. Dynamic Thermal Management (DTM) techniques have emerged as potential solutions that mitigate the increasing temperatures on a die. However, considering the scaling of system sizes and the adoption of the Network-on-Chip (NoC) paradigm to serve as the interconnection fabric exacerbates the problem as both cores and NoC elements contribute to the increased heat dissipation on the chip. Typically, DTM techniques can either be proactive or reactive. Proactive DTM techniques, where the system has the ability to predict the thermal profile of the chip ahead of time are more desirable than reactive DTM techniques where the system utilizes thermal sensors to determine the current temperature of the chip. Moreover, DTM techniques either address core or NoC level thermal issues separately. Hence, this thesis proposes a combined proactive DTM technique that integrates both core level and NoC level DTM techniques. The combined DTM mechanism includes a dynamic temperature-aware routing approach for the NoC level elements, and includes task reallocation heuristics for the core level elements. On-chip wireless interconnects recently envisioned to enable energy-efficient data exchange between cores in a multicore chip will be used to provide a broadcast-capable medium to efficiently distribute thermal control messages to trigger and manage the DTM. Combining the proactive DTM technique with on-chip wireless interconnects, the on-chip temperature is restricted within target temperatures without significantly affecting the performance of the NoC based interconnection fabric of the multicore chip

    Machine Learning for Resource-Constrained Computing Systems

    Get PDF
    Die verfügbaren Ressourcen in Informationsverarbeitungssystemen wie Prozessoren sind in der Regel eingeschränkt. Das umfasst z. B. die elektrische Leistungsaufnahme, den Energieverbrauch, die Wärmeabgabe oder die Chipfläche. Daher ist die Optimierung der Verwaltung der verfügbaren Ressourcen von größter Bedeutung, um Ziele wie maximale Performanz zu erreichen. Insbesondere die Ressourcenverwaltung auf der Systemebene hat über die (dynamische) Zuweisung von Anwendungen zu Prozessorkernen und über die Skalierung der Spannung und Frequenz (dynamic voltage and frequency scaling, DVFS) einen großen Einfluss auf die Performanz, die elektrische Leistung und die Temperatur während der Ausführung von Anwendungen. Die wichtigsten Herausforderungen bei der Ressourcenverwaltung sind die hohe Komplexität von Anwendungen und Plattformen, unvorhergesehene (zur Entwurfszeit nicht bekannte) Anwendungen oder Plattformkonfigurationen, proaktive Optimierung und die Minimierung des Laufzeit-Overheads. Bestehende Techniken, die auf einfachen Heuristiken oder analytischen Modellen basieren, gehen diese Herausforderungen nur unzureichend an. Aus diesem Grund ist der Hauptbeitrag dieser Dissertation der Einsatz maschinellen Lernens (ML) für Ressourcenverwaltung. ML-basierte Lösungen ermöglichen die Bewältigung dieser Herausforderungen durch die Vorhersage der Auswirkungen potenzieller Entscheidungen in der Ressourcenverwaltung, durch Schätzung verborgener (unbeobachtbarer) Eigenschaften von Anwendungen oder durch direktes Lernen einer Ressourcenverwaltungs-Strategie. Diese Dissertation entwickelt mehrere neuartige ML-basierte Ressourcenverwaltung-Techniken für verschiedene Plattformen, Ziele und Randbedingungen. Zunächst wird eine auf Vorhersagen basierende Technik zur Maximierung der Performanz von Mehrkernprozessoren mit verteiltem Last-Level Cache und limitierter Maximaltemperatur vorgestellt. Diese verwendet ein neuronales Netzwerk (NN) zur Vorhersage der Auswirkungen potenzieller Migrationen von Anwendungen zwischen Prozessorkernen auf die Performanz. Diese Vorhersagen erlauben die Bestimmung der bestmöglichen Migration und ermöglichen eine proaktive Verwaltung. Das NN ist so trainiert, dass es mit unbekannten Anwendungen und verschiedenen Temperaturlimits zurechtkommt. Zweitens wird ein Boosting-Verfahren zur Maximierung der Performanz homogener Mehrkernprozessoren mit limitierter Maximaltemperatur mithilfe von DVFS vorgestellt. Dieses basiert auf einer neuartigen {Boostability}-Metrik, die die Abhängigkeiten von Performanz, elektrischer Leistung und Temperatur auf Spannungs/Frequenz-Änderungen in einer Metrik vereint. % ignorerepeated Die Abhängigkeiten von Performanz und elektrischer Leistung hängen von der Anwendung ab und können zur Laufzeit nicht direkt beobachtet (gemessen) werden. Daher wird ein NN verwendet, um diese Werte für unbekannte Anwendungen zu schätzen und so die Komplexität der Boosting-Optimierung zu bewältigen. Drittens wird eine Technik zur Temperaturminimierung von heterogenen Mehrkernprozessoren mit Quality of Service-Zielen vorgestellt. Diese verwendet Imitationslernen, um eine Migrationsstrategie von Anwendungen aus optimalen Orakel-Demonstrationen zu lernen. Dafür wird ein NN eingesetzt, um die Komplexität der Plattform und des Anwendungsverhaltens zu bewältigen. Die Inferenz des NNs wird mit Hilfe eines vorhandenen generischen Beschleunigers, einer Neural Processing Unit (NPU), beschleunigt. Auch die ML Algorithmen selbst müssen auch mit begrenzten Ressourcen ausgeführt werden. Zuletzt wird eine Technik für ressourcenorientiertes Training auf verteilten Geräten vorgestellt, um einen konstanten Trainingsdurchsatz bei sich schnell ändernder Verfügbarkeit von Rechenressourcen aufrechtzuerhalten, wie es z.~B.~aufgrund von Konflikten bei gemeinsam genutzten Ressourcen der Fall ist. Diese Technik verwendet Structured Dropout, welches beim Training zufällige Teile des NNs auslässt. Dadurch können die erforderlichen Ressourcen für das Training dynamisch angepasst werden -- mit vernachlässigbarem Overhead, aber auf Kosten einer langsameren Trainingskonvergenz. Die Pareto-optimalen Dropout-Parameter pro Schicht des NNs werden durch eine Design Space Exploration bestimmt. Evaluierungen dieser Techniken werden sowohl in Simulationen als auch auf realer Hardware durchgeführt und zeigen signifikante Verbesserungen gegenüber dem Stand der Technik, bei vernachlässigbarem Laufzeit-Overhead. Zusammenfassend zeigt diese Dissertation, dass ML eine Schlüsseltechnologie zur Optimierung der Verwaltung der limitierten Ressourcen auf Systemebene ist, indem die damit verbundenen Herausforderungen angegangen werden

    Resource-aware scheduling for 2D/3D multi-/many-core processor-memory systems

    Get PDF
    This dissertation addresses the complexities of 2D/3D multi-/many-core processor-memory systems, focusing on two key areas: enhancing timing predictability in real-time multi-core processors and optimizing performance within thermal constraints. The integration of an increasing number of transistors into compact chip designs, while boosting computational capacity, presents challenges in resource contention and thermal management. The first part of the thesis improves timing predictability. We enhance shared cache interference analysis for set-associative caches, advancing the calculation of Worst-Case Execution Time (WCET). This development enables accurate assessment of cache interference and the effectiveness of partitioned schedulers in real-world scenarios. We introduce TCPS, a novel task and cache-aware partitioned scheduler that optimizes cache partitioning based on task-specific WCET sensitivity, leading to improved schedulability and predictability. Our research explores various cache and scheduling configurations, providing insights into their performance trade-offs. The second part focuses on thermal management in 2D/3D many-core systems. Recognizing the limitations of Dynamic Voltage and Frequency Scaling (DVFS) in S-NUCA many-core processors, we propose synchronous thread migrations as a thermal management strategy. This approach culminates in the HotPotato scheduler, which balances performance and thermal safety. We also introduce 3D-TTP, a transient temperature-aware power budgeting strategy for 3D-stacked systems, reducing the need for Dynamic Thermal Management (DTM) activation. Finally, we present 3QUTM, a novel method for 3D-stacked systems that combines core DVFS and memory bank Low Power Modes with a learning algorithm, optimizing response times within thermal limits. This research contributes significantly to enhancing performance and thermal management in advanced processor-memory systems

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Adaptive Knobs for Resource Efficient Computing

    Get PDF
    Performance demands of emerging domains such as artificial intelligence, machine learning and vision, Internet-of-things etc., continue to grow. Meeting such requirements on modern multi/many core systems with higher power densities, fixed power and energy budgets, and thermal constraints exacerbates the run-time management challenge. This leaves an open problem on extracting the required performance within the power and energy limits, while also ensuring thermal safety. Existing architectural solutions including asymmetric and heterogeneous cores and custom acceleration improve performance-per-watt in specific design time and static scenarios. However, satisfying applications’ performance requirements under dynamic and unknown workload scenarios subject to varying system dynamics of power, temperature and energy requires intelligent run-time management. Adaptive strategies are necessary for maximizing resource efficiency, considering i) diverse requirements and characteristics of concurrent applications, ii) dynamic workload variation, iii) core-level heterogeneity and iv) power, thermal and energy constraints. This dissertation proposes such adaptive techniques for efficient run-time resource management to maximize performance within fixed budgets under unknown and dynamic workload scenarios. Resource management strategies proposed in this dissertation comprehensively consider application and workload characteristics and variable effect of power actuation on performance for pro-active and appropriate allocation decisions. Specific contributions include i) run-time mapping approach to improve power budgets for higher throughput, ii) thermal aware performance boosting for efficient utilization of power budget and higher performance, iii) approximation as a run-time knob exploiting accuracy performance trade-offs for maximizing performance under power caps at minimal loss of accuracy and iv) co-ordinated approximation for heterogeneous systems through joint actuation of dynamic approximation and power knobs for performance guarantees with minimal power consumption. The approaches presented in this dissertation focus on adapting existing mapping techniques, performance boosting strategies, software and dynamic approximations to meet the performance requirements, simultaneously considering system constraints. The proposed strategies are compared against relevant state-of-the-art run-time management frameworks to qualitatively evaluate their efficacy

    Design and Analysis of Dynamic Thermal Management in Chip Multiprocessors (CMPs)

    Get PDF
    Chip Multiprocessors (CMPs) have been prevailing in the modern microprocessor market. As the significant heat is converted by the ever-increasing power density and current leakage, the raised operating temperature in a chip has already threatened the system?s reliability and led the thermal control to be one of the most important issues needed to be addressed immediately in chip designs. Due to the cost and complexity of designing thermal packaging, many Dynamic Thermal Management (DTM) schemes have been widely adopted in modern processors. In this study, we focus on developing a simple and accurate thermal model, which provides a scheduling decision for running tasks. And we show how to design an efficient DTM scheme with negligible performance overhead. First, we propose an efficient DTM scheme for multimedia applications that tackles the thermal control problem in a unified manner. A DTM scheme for multimedia applications makes soft realtime scheduling decisions based on statistical characteristics of multimedia applications. Specifically, we model application execution characteristics as the probability distribution of the number of cycles required to decode frames. Our DTM scheme for multimedia applications has been implemented on Linux in two mobile processors providing variable clock frequencies in an Intel Pentium-M processor and an Intel Atom processor. In order to evaluate the performance of the proposed DTM scheme, we exploit two major codecs, MPEG-4 and H.264/AVC based on various frame resolutions. Our results show that our DTM scheme for multimedia applications lowers the overall temperature by 4 degrees C and the peak temperature by 6 degrees C (up to 10 degrees C), while maintaining frame drop ratio under 5% compared to existing DTM schemes for multimedia applications. Second, we propose a lightweight online workload estimation using the cumulative distribution function and architectural information via Performance Monitoring Counters (PMC) to observe the processes dynamic workload behaviors. We also present an accurate thermal model for CMP architectures to analyze the thermal correlation effects by profiling the thermal impacts from neighboring cores under the specific workload. Hence, according to the estimated workload characteristics and thermal correlation effects, we can estimate the future temperature of each core more accurately. We implement a DTM scheme considering workload characteristics and thermal correlation effects on real machines, an Intel Quad-Core Q6600 system and Dell PowerEdge 2950 (dual Intel Xeon E5310 Quad-Core) system, running applications ranging from multimedia applications to several benchmarks. Experiments results show that our DTM scheme reduces the peak temperature by 8% with 0.54% performance overhead compared to Linux Standard Scheduler, while existing DTM schemes reduce peak temperature by 4% with up to 50% performance overhead

    ADAPTIVE POWER MANAGEMENT FOR COMPUTERS AND MOBILE DEVICES

    Get PDF
    Power consumption has become a major concern in the design of computing systems today. High power consumption increases cooling cost, degrades the system reliability and also reduces the battery life in portable devices. Modern computing/communication devices support multiple power modes which enable power and performance tradeoff. Dynamic power management (DPM), dynamic voltage and frequency scaling (DVFS), and dynamic task migration for workload consolidation are system level power reduction techniques widely used during runtime. In the first part of the dissertation, we concentrate on the dynamic power management of the personal computer and server platform where the DPM, DVFS and task migrations techniques are proved to be highly effective. A hierarchical energy management framework is assumed, where task migration is applied at the upper level to improve server utilization and energy efficiency, and DPM/DVFS is applied at the lower level to manage the power mode of individual processor. This work focuses on estimating the performance impact of workload consolidation and searching for optimal DPM/DVFS that adapts to the changing workload. Machine learning based modeling and reinforcement learning based policy optimization techniques are investigated. Mobile computing has been weaved into everyday lives to a great extend in recent years. Compared to traditional personal computer and server environment, the mobile computing environment is obviously more context-rich and the usage of mobile computing device is clearly imprinted with user\u27s personal signature. The ability to learn such signature enables immense potential in workload prediction and energy or battery life management. In the second part of the dissertation, we present two mobile device power management techniques which take advantage of the context-rich characteristics of mobile platform and make adaptive energy management decisions based on different user behavior. We firstly investigate the user battery usage behavior modeling and apply the model directly for battery energy management. The first technique aims at maximizing the quality of service (QoS) while keeping the risk of battery depletion below a given threshold. The second technique is an user-aware streaming strategies for energy efficient smartphone video playback applications (e.g. YouTube) that minimizes the sleep and wake penalty of cellular module and at the same time avoid the energy waste from excessive downloading. Runtime power and thermal management has attracted substantial interests in multi-core distributed embedded systems. Fast performance evaluation is an essential step in the research of distributed power and thermal management. In last part of the dissertation, we present an FPGA based emulator of multi-core distributed embedded system designed to support the research in runtime power/thermal management. Hardware and software supports are provided to carry out basic power/thermal management actions including inter-core or inter-FPGA communications, runtime temperature monitoring and dynamic frequency scaling
    corecore