466 research outputs found

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Federated Learning in Intelligent Transportation Systems: Recent Applications and Open Problems

    Full text link
    Intelligent transportation systems (ITSs) have been fueled by the rapid development of communication technologies, sensor technologies, and the Internet of Things (IoT). Nonetheless, due to the dynamic characteristics of the vehicle networks, it is rather challenging to make timely and accurate decisions of vehicle behaviors. Moreover, in the presence of mobile wireless communications, the privacy and security of vehicle information are at constant risk. In this context, a new paradigm is urgently needed for various applications in dynamic vehicle environments. As a distributed machine learning technology, federated learning (FL) has received extensive attention due to its outstanding privacy protection properties and easy scalability. We conduct a comprehensive survey of the latest developments in FL for ITS. Specifically, we initially research the prevalent challenges in ITS and elucidate the motivations for applying FL from various perspectives. Subsequently, we review existing deployments of FL in ITS across various scenarios, and discuss specific potential issues in object recognition, traffic management, and service providing scenarios. Furthermore, we conduct a further analysis of the new challenges introduced by FL deployment and the inherent limitations that FL alone cannot fully address, including uneven data distribution, limited storage and computing power, and potential privacy and security concerns. We then examine the existing collaborative technologies that can help mitigate these challenges. Lastly, we discuss the open challenges that remain to be addressed in applying FL in ITS and propose several future research directions

    Formulation, implementation considerations, and first performance evaluation of algorithmic solutions - D4.1

    Get PDF
    Deliverable D4.1 del projecte Europeu OneFIT (ICT-2009-257385)This deliverable contains a first version of the algorithmic solutions for enabling opportunistic networks. The presented algorithms cover the full range of identified management tasks: suitability, creation, QoS control, reconfiguration and forced terminations. Preliminary evaluations complement the proposed algorithms. Implementation considerations towards the practicality of the considered algorithms are also included.Preprin

    Proactive Received Power Prediction Using Machine Learning and Depth Images for mmWave Networks

    Full text link
    This study demonstrates the feasibility of the proactive received power prediction by leveraging spatiotemporal visual sensing information toward the reliable millimeter-wave (mmWave) networks. Since the received power on a mmWave link can attenuate aperiodically due to a human blockage, the long-term series of the future received power cannot be predicted by analyzing the received signals before the blockage occurs. We propose a novel mechanism that predicts a time series of the received power from the next moment to even several hundred milliseconds ahead. The key idea is to leverage the camera imagery and machine learning (ML). The time-sequential images can involve the spatial geometry and the mobility of obstacles representing the mmWave signal propagation. ML is used to build the prediction model from the dataset of sequential images labeled with the received power in several hundred milliseconds ahead of when each image is obtained. The simulation and experimental evaluations using IEEE 802.11ad devices and a depth camera show that the proposed mechanism employing convolutional LSTM predicted a time series of the received power in up to 500 ms ahead at an inference time of less than 3 ms with a root-mean-square error of 3.5 dB

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art
    corecore