727 research outputs found

    Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    Research concerning project planning under uncertainty has primarily focused on the stochastic resource-constrained project scheduling problem (stochastic RCPSP), an extension of the basic CPSP, in which the assumption of deterministic activity durations is dropped. In this paper, we introduce a new variant of the RCPSP for which the uncertainty is modeled by means of resource availabilities that are subject to unforeseen breakdowns. Our objective is to build a robust schedule that meets the project due date and minimizes the schedule instability cost, defined as the expected weighted sum of the absolute deviations between the planned and actually realized activity starting times during project execution. We describe how stochastic resource breakdowns can be modeled, which reaction is recommended when are source infeasibility occurs due to a breakdown and how one can protect the initial schedule from the adverse effects of potential breakdowns.

    Exact and suboptimal reactive strategies for resource-constrained project scheduling with uncertain resource availabilities.

    Get PDF
    In order to cope with the uncertainty inherent in practical project management, proactive and/or reactive strategies can be used. Proactive strategies try to anticipate future disruptions by incorporating slack time or excess resource availability into the schedule, whereas reactive strategies react after a disruption happened and try to revert to a feasible schedule. Traditionally, reactive approaches have focused on obtaining a good schedule with respect to the original objective function or a schedule that deviates as little as possible from the baseline schedule. In this paper, we present various approaches, exact as well as heuristic, for optimizing the latter objective and thus encouraging schedule stability. Furthermore, in contrast to traditional rescheduling algorithms, we present a new heuristic that also takes future uncertainty into account when repairing the schedule. We consider a variant of the resource- constrained project scheduling problem in which the uncertainty is modeled by means of unexpected resource breakdowns. The results of an extensive computational experiment are given to compare the performance of the proposed strategies.Schedule stability; Stability; Algorithms; Heuristic; Uncertainty; Project scheduling; Scheduling; Performance; Strategy; Order; Project management; Management; Time;

    A tabu search procedure for generating robust project baseline schedules under stochastic resource availabilities.

    Get PDF
    The majority of research efforts in project scheduling assume a static and deterministic environment with complete information. In practice, however, these assumptions will hardly, if ever, be satisfied. Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against anticipated disruptions that may occur during project execution. In this paper, we focus on disruptions that may be caused by stochastic resource availabilities and aim at generating stable baseline schedules, where the solution robustness (stability) of the baseline schedule is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate free slack based objective function. The effectiveness of the procedure is demonstrated by extensive computational results obtained on a set of randomly generated test instances.

    A tabu search procedure for developing robust predicitive project schedules.

    Get PDF
    Proactive scheduling aims at the generation of robust baseline schedules that are as much as possible protected against disruptions that may occur during project execution. In this paper, we focus on disruptions caused by stochastic resource availabilities and aim at generating stable baseline schedules. A scheduleā€™s robustness (stability) is measured by the weighted deviation between the planned and the actually realized activity starting times during project execution. We present a tabu search procedure that operates on a surrogate, free slack based objective function. Its effectiveness is demonstrated by extensive computational results obtained on a set of randomly generated test instances.Project scheduling; Robustness; Proactive; Stability;

    Timeslack-based techniques for generating robust projectschedules subject to resource uncertainty.

    Get PDF
    The classical, deterministic resource-constrained project scheduling problem has been the subject of a great deal of research during the previous decades. This is not surprising given the high practical relevance of this scheduling problem. Nevertheless, extensions are needed to be better able to cope with situations arising in practice such as multiple activity execution modes, activity duration changes and resource breakdowns. In this paper we analytically determine the impact of unexpected resource breakdowns on activity durations. Furthermore, using this information we develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource unavailabilities. This strategy will be compared to a traditional simulation-based procedure and to a heuristic developed for the case of stochastic activity durations.Uncertainty; Project scheduling; Scheduling; Research; Impact; Information; Time; Order; IT; Strategy; Heuristic;

    Exact and heuristic reactive planning procedures for multi-mode resource-constrained projects.

    Get PDF
    The multi-mode resource-constrained project scheduling problem (MRCPSP) involves the determination of a baseline schedule of the project activities, which can be executed in multiple modes, satisfying the precedence relations and resource constraints while minimizing the project duration. During the execution of the project, the baseline schedule may become infeasible due to activity duration and resource disruptions. We propose and evaluate a number of dedicated exact reactive scheduling procedures as well as a tabu search heuristic for repairing a disrupted schedule. We report on promising computational results obtained on a set of benchmark problems.Project scheduling; Uncertainty; Reactive scheduling; Multi-mode RCPSP;

    Solution and quality robust project scheduling: a methodological framework.

    Get PDF
    The vast majority of the research efforts in project scheduling over the past several years has concentrated on the development of exact and suboptimal procedures for the generation of a baseline schedule assuming complete information and a deterministic environment. During execution, however, projects may be the subject of considerable uncertainty, which may lead to numerous schedule disruptions. Predictive-reactive scheduling refers to the process where a baseline schedule is developed prior to the start of the project and updated if necessary during project execution. It is the objective of this paper to review possible procedures for the generation of proactive (robust) schedules, which are as well as possible protected against schedule disruptions, and for the deployment of reactive scheduling procedures that may be used to revise or re-optimize the baseline schedule when unexpected events occur. We also offer a methodological framework that should allow project management to identify the proper scheduling methodology for different project scheduling environments. Finally, we survey the basics of Critical Chain scheduling and indicate in which environments it is useful.Framework; Information; Management; Processes; Project management; Project scheduling; Project scheduling under uncertainty; Stability; Robust scheduling; Quality; Scheduling; Stability; Uncertainty;
    • ā€¦
    corecore