11,562 research outputs found

    Asynchronous Proactive RSA

    Get PDF
    Nowadays, to model practical systems better, such as the Internet network and ad hoc networks, researchers usually regard these systems as asynchronous networks. Meanwhile, proactive secret sharing schemes are often employed to tolerate a mobile adversary. Considering both aspects, an asynchronous proactive threshold signature scheme is needed to keep computer systems secure. So far, two asynchronous proactive secret sharing schemes have been proposed. One is proposed by Zhou in 2001, which is for RSA schemes. The other scheme is proposed by Cachin in 2002, which is a proactive secret sharing scheme for discrete-log schemes. There exist several drawbacks in both schemes. In Zhou¡¯s scheme, the formal security proof of this scheme is missing. Furthermore, Zhou¡¯s scheme needs to resort to the system administrator as the trusted third party for further run when some Byzantine errors occur. In Cachin¡¯s scheme, the building block is based on the threshold RSA scheme proposed by Shoup. However, how to proactivize Shoup¡¯s scheme is omitted in Cachin¡¯s scheme, so this scheme is incomplete. In this paper, we present a complete provably secure asynchronous proactive RSA scheme (APRS). Our paper has four contributions. Firstly, we present a provably secure asynchronous verifiable secret sharing for RSA schemes (asynchronous verifiable additive secret sharing, AVASS), which is based on a verifiable additive secret sharing over integers. Secondly, we propose an asynchronous threshold RSA signature scheme that is based on the AVASS scheme and the random oracle model, and is capable of being proactivized. Thirdly, we present a provably secure threshold coin-tossing scheme on the basis of the above threshold RSA scheme. Fourthly, we propose an asynchronous proactive secret sharing based on the threshold RSA scheme and the coin-tossing scheme. Finally, combining the proactive secret sharing scheme and the threshold RSA scheme, we achieve a complete provably secure asynchronous proactive RSA scheme

    Representational organization of novel task sets during proactive encoding

    Get PDF
    Recent multivariate analyses of brain data have boosted our understanding of the organizational principles that shape neural coding. However, most of this progress has focused on perceptual visual regions (Connolly et al., 2012), whereas far less is known about the organization of more abstract, action-oriented representations. In this study, we focused on humans{\textquoteright} remarkable ability to turn novel instructions into actions. While previous research shows that instruction encoding is tightly linked to proactive activations in fronto-parietal brain regions, little is known about the structure that orchestrates such anticipatory representation. We collected fMRI data while participants (both males and females) followed novel complex verbal rules that varied across control-related variables (integrating within/across stimuli dimensions, response complexity, target category) and reward expectations. Using Representational Similarity Analysis (Kriegeskorte et al., 2008) we explored where in the brain these variables explained the organization of novel task encoding, and whether motivation modulated these representational spaces. Instruction representations in the lateral prefrontal cortex were structured by the three control-related variables, while intraparietal sulcus encoded response complexity and the fusiform gyrus and precuneus organized its activity according to the relevant stimulus category. Reward exerted a general effect, increasing the representational similarity among different instructions, which was robustly correlated with behavioral improvements. Overall, our results highlight the flexibility of proactive task encoding, governed by distinct representational organizations in specific brain regions. They also stress the variability of motivation-control interactions, which appear to be highly dependent on task attributes such as complexity or novelty.SIGNIFICANCE STATEMENTIn comparison with other primates, humans display a remarkable success in novel task contexts thanks to our ability to transform instructions into effective actions. This skill is associated with proactive task-set reconfigurations in fronto-parietal cortices. It remains yet unknown, however, how the brain encodes in anticipation the flexible, rich repertoire of novel tasks that we can achieve. Here we explored cognitive control and motivation-related variables that might orchestrate the representational space for novel instructions. Our results showed that different dimensions become relevant for task prospective encoding depending on the brain region, and that the lateral prefrontal cortex simultaneously organized task representations following different control-related variables. Motivation exerted a general modulation upon this process, diminishing rather than increasing distances among instruction representations

    Management of Road Infrastructure Safety

    Get PDF
    Road Infrastructure Safety Management (RISM) refers to a set of procedures that support a road authority in decision making related to the improvement of safety on a road network. Some of these procedures can be applied to existing infrastructure, thus enabling a reactive approach; and other procedures are used in early stages of a project's life-cycle allowing a proactive approach. The objective of this paper is to provide an overview of the most well-known procedures and present a series of recommendations for successful road infrastructure safety management. The work described in the paper was completed by the IRTAD sub-working group on Road Infrastructure Safety Management and presented in detail in the respective Report. The methodology followed on this purpose included the description of the most consolidated RISM procedures, the analysis of the use of RISM procedures worldwide and the identification of possible weaknesses and barriers to their implementation, the provision of good practice examples and the contribution to the scientific assessment of procedures. Specifically, the following RISM procedures were considered: Road Safety Impact Assessment (RIA), Efficiency Assessment Tools (EAT), Road Safety Audit (RSA), Network Operation (NO), Road Infrastructure Safety Performance Indicators (SPI), Network Safety Ranking (NSR), Road Assessment Programs (RAP), Road Safety Inspection (RSI), High Risk Sites (HRS) and In-depth Investigation. Each procedure was described along with tools and data needed for its implementation as well as relevant common practices worldwide. A synthesis summarizing the key information for each procedure was also drafted. Based on a survey on 23 IRTAD member countries from worldwide, the lack of resources or tools is the most commonly stated reason for not applying a RISM procedure. This has been frequently found mainly in European countries. Another common reason is the absence of recommendations/guidelines, especially for SPI, RAP, RSI and RSA. This highlights the importance of the presence of some legislation regulating the application of the procedures. Lack of data was found important mainly for SPI, HRS and EAT. Good practices of road infrastructure safety management have been explored in order to find solutions to the issues highlighted by the survey and provide examples about how these issues have been overcome in some countries. Specifically, issues related to data, legal framework, funding, knowledge, tools and dealing with more RISM procedures were addressed. Finally, nine key messages and six recommendations for better Road Infrastructure Safety Management were developed based on the conclusions made

    Road Safety Audit for the Intersection of US 59 and IA 9 in Osceola County, Iowa Final Report, March 2012

    Get PDF
    The Iowa Department of Transportation (DOT) requested a road safety audit (RSA) of the US 59/IA 9 intersection in northwestern Iowa, just south of the Minnesota border, to assess intersection environmental issues and crash history and recommend appropriate mitigation to address the identified safety issues at the intersection. Although the number of crashes at the location has not been significantly higher than the statewide average for similar intersections, the severity of these crashes has been of concern. This RSA was unique in that it included intersection video observation and recorded traffic conflict data analysis, along with the daylight and nighttime field reviews. This report outlines the findings and recommendations of the RSA team for addressing the safety concerns at this intersection

    Designing for Fast and Slow Circular Fashion Systems: Exploring Strategies for Multiple and Extended Product Cycles

    Full text link
    Abstract: This paper reviews work conducted by practiced-based textile design researchers based at the University of the Arts London (UAL) who were part of the multi-disciplinary, Swedish-based Mistra Future Fashion research consortium between June 2011 – May 2015. The objective of the consortium was to research opportunities to advance a more sustainable, yet still profitable, fashion industry. The final stage of the project involved developing practice-based approaches through physical exhibition prototypes, which formed the basis of the project’s online exhibition, The Textile Toolbox (Earley & Goldsworthy, 2014). Here we discuss two of these design prototypes which both explored ‘designing for cyclability’ as a proactive approach to improving the retention of material value within ‘circular fashion systems’. Designing in order to enable fully joined up cycles of material use is the ultimate aim for both approaches, but this ‘speed’ of cycle creates very different challenges on which to make informed and appropriate design choices. The two approaches are deliberately extreme opposites, with ‘short-life’ closed-loop garments explored as complementary to ‘long-life’ user engagement strategies. Both can ultimately be argued to have an ‘extending’ affect on materials in the value-chain; one by keeping products in use over multiple cycles in perpetuity, the other by extending the single use cycle of a product over time. By exploring this polarisation of ‘speeds and needs’ we aim to gain insights into creating an effective circular materials economy, which acknowledges the complex nature of our current and emerging fashion system
    corecore