1,436 research outputs found

    Big Data Caching for Networking: Moving from Cloud to Edge

    Full text link
    In order to cope with the relentless data tsunami in 5G5G wireless networks, current approaches such as acquiring new spectrum, deploying more base stations (BSs) and increasing nodes in mobile packet core networks are becoming ineffective in terms of scalability, cost and flexibility. In this regard, context-aware 55G networks with edge/cloud computing and exploitation of \emph{big data} analytics can yield significant gains to mobile operators. In this article, proactive content caching in 55G wireless networks is investigated in which a big data-enabled architecture is proposed. In this practical architecture, vast amount of data is harnessed for content popularity estimation and strategic contents are cached at the BSs to achieve higher users' satisfaction and backhaul offloading. To validate the proposed solution, we consider a real-world case study where several hours of mobile data traffic is collected from a major telecom operator in Turkey and a big data-enabled analysis is carried out leveraging tools from machine learning. Based on the available information and storage capacity, numerical studies show that several gains are achieved both in terms of users' satisfaction and backhaul offloading. For example, in the case of 1616 BSs with 30%30\% of content ratings and 1313 Gbyte of storage size (78%78\% of total library size), proactive caching yields 100%100\% of users' satisfaction and offloads 98%98\% of the backhaul.Comment: accepted for publication in IEEE Communications Magazine, Special Issue on Communications, Caching, and Computing for Content-Centric Mobile Network

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Smart PIN: utility-based replication and delivery of multimedia content to mobile users in wireless networks

    Get PDF
    Next generation wireless networks rely on heterogeneous connectivity technologies to support various rich media services such as personal information storage, file sharing and multimedia streaming. Due to users’ mobility and dynamic characteristics of wireless networks, data availability in collaborating devices is a critical issue. In this context Smart PIN was proposed as a personal information network which focuses on performance of delivery and cost efficiency. Smart PIN uses a novel data replication scheme based on individual and overall system utility to best balance the requirements for static data and multimedia content delivery with variable device availability due to user mobility. Simulations show improved results in comparison with other general purpose data replication schemes in terms of data availability

    The Price of Fog: a Data-Driven Study on Caching Architectures in Vehicular Networks

    Get PDF
    Vehicular users are expected to consume large amounts of data, for both entertainment and navigation purposes. This will put a strain on cellular networks, which will be able to cope with such a load only if proper caching is in place, this in turn begs the question of which caching architecture is the best-suited to deal with vehicular content consumption. In this paper, we leverage a large-scale, crowd-collected trace to (i) characterize the vehicular traffic demand, in terms of overall magnitude and content breakup, (ii) assess how different caching approaches perform against such a real-world load, (iii) study the effect of recommendation systems and local contents. We define a price-of-fog metric, expressing the additional caching capacity to deploy when moving from traditional, centralized caching architectures to a "fog computing" approach, where caches are closer to the network edge. We find that for location-specific contents, such as the ones that vehicular users are most likely to request, such a price almost disappears. Vehicular networks thus make a strong case for the adoption of mobile-edge caching, as we are able to reap the benefit thereof -- including a reduction in the distance traveled by data, within the core network -- with little or no of the associated disadvantages.Comment: ACM IoV-VoI 2016 MobiHoc Workshop, The 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing: MobiHoc 2016-IoV-VoI Workshop, Paderborn, German
    • 

    corecore