365 research outputs found

    Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives

    Get PDF
    © ACM, 2020. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, Vol. 53, No. 5, Article 95. Publication date: September 2020. https://doi.org/10.1145/3403956[EN] Performance and power constraints come together with Complementary Metal Oxide Semiconductor technology scaling in future Exascale systems. Technology scaling makes each individual transistor more prone to faults and, due to the exponential increase in the number of devices per chip, to higher system fault rates. Consequently, High-performance Computing (HPC) systems need to integrate prediction, detection, and recovery mechanisms to cope with faults efficiently. This article reviews fault detection, fault prediction, and recovery techniques in HPC systems, from electronics to system level. We analyze their strengths and limitations. Finally, we identify the promising paths to meet the reliability levels of Exascale systems.This work has received funding from the European Union's Horizon 2020 (H2020) research and innovation program under the FET-HPC Grant Agreement No. 801137 (RECIPE). Jaume Abella was also partially supported by the Ministry of Economy and Competitiveness of Spain under Contract No. TIN2015-65316-P and under Ramon y Cajal Postdoctoral Fellowship No. RYC-2013-14717, as well as by the HiPEAC Network of Excellence. Ramon Canal is partially supported by the Generalitat de Catalunya under Contract No. 2017SGR0962.Canal, R.; Hernández Luz, C.; Tornero-Gavilá, R.; Cilardo, A.; Massari, G.; Reghenzani, F.; Fornaciari, W.... (2020). Predictive Reliability and Fault Management in Exascale Systems: State of the Art and Perspectives. ACM Computing Surveys. 53(5):1-32. https://doi.org/10.1145/3403956S132535Abella, J., Hernandez, C., Quinones, E., Cazorla, F. J., Conmy, P. R., Azkarate-askasua, M., … Vardanega, T. (2015). WCET analysis methods: Pitfalls and challenges on their trustworthiness. 10th IEEE International Symposium on Industrial Embedded Systems (SIES). doi:10.1109/sies.2015.7185039E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324. E. Agullo L. Giraud A. Guermouche J. Roman and M. Zounon. 2013. Towards resilient parallel linear Krylov solvers: Recover-restart strategies. INRIA Research Report RR-8324.Agullo, E., Giraud, L., Salas, P., & Zounon, M. (2016). Interpolation-Restart Strategies for Resilient Eigensolvers. SIAM Journal on Scientific Computing, 38(5), C560-C583. doi:10.1137/15m1042115Al-Qawasmeh, A. M., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2015). Power and Thermal-Aware Workload Allocation in Heterogeneous Data Centers. IEEE Transactions on Computers, 64(2), 477-491. doi:10.1109/tc.2013.116ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest. ARM. 2017. ARM Reliability Availability and Serviceability (RAS) Specification—ARMv8 for the ARMv8-A Architecture Profile. White paper. Retrieved from https://developer.arm.com/docs/ddi0587/latest.Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33. doi:10.1109/tdsc.2004.2Bautista-Gomez, L., Zyulkyarov, F., Unsal, O., & McIntosh-Smith, S. (2016). Unprotected Computing: A Large-Scale Study of DRAM Raw Error Rate on a Supercomputer. SC16: International Conference for High Performance Computing, Networking, Storage and Analysis. doi:10.1109/sc.2016.54Berrocal, E., Bautista-Gomez, L., Di, S., Lan, Z., & Cappello, F. (2017). Toward General Software Level Silent Data Corruption Detection for Parallel Applications. IEEE Transactions on Parallel and Distributed Systems, 28(12), 3642-3655. doi:10.1109/tpds.2017.2735971M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer. M.-A. Breuer and A. D. Friedman. 1976. Diagnosis 8 Reliable Design of Digital Systems. Springer.P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA]. P. Bridges K. Ferreira M. Heroux and M. Hoemmen. 2012. Fault-tolerant linear solvers via selective reliability. ArXiv e-prints June 2012. arXiv:1206.1390 [math.NA].F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14. F. Cappello A. Geist W. Gropp S. Kale B. Kramer and M. Snir. 2014. Toward exascale resilience: 2014 update. Supercomput. Front. Innovat. 1 1 (2014). http://superfri.org/superfri/article/view/14.F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283 F. J. Cazorla L. Kosmidis E. Mezzetti C. Hernandez J. Abella and T. Vardanega. 2019. Probabilistic worst-case timing analysis: Taxonomy and comprehensive survey. ACM Comput. Surv. 52 1 Article 14 (Feb. 2019) 35 pages. DOI:https://doi.org/10.1145/3301283Chan, C. S., Pan, B., Gross, K., Vaidyanathan, K., & Rosing, T. Š. (2014). Correcting vibration-induced performance degradation in enterprise servers. ACM SIGMETRICS Performance Evaluation Review, 41(3), 83-88. doi:10.1145/2567529.2567555Chantem, T., Hu, X. S., & Dick, R. P. (2011). Temperature-Aware Scheduling and Assignment for Hard Real-Time Applications on MPSoCs. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(10), 1884-1897. doi:10.1109/tvlsi.2010.2058873Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., & Brewer, E. (s. f.). Pinpoint: problem determination in large, dynamic Internet services. Proceedings International Conference on Dependable Systems and Networks. doi:10.1109/dsn.2002.1029005Chen, Z. (2011). Algorithm-based recovery for iterative methods without checkpointing. Proceedings of the 20th international symposium on High performance distributed computing - HPDC ’11. doi:10.1145/1996130.1996142Chen, Z. (2013). Online-ABFT. Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP ’13. doi:10.1145/2442516.2442533Coskun, A. K., Rosing, T. S., Mihic, K., De Micheli, G., & Leblebici, Y. (2006). Analysis and Optimization of MPSoC Reliability. Journal of Low Power Electronics, 2(1), 56-69. doi:10.1166/jolpe.2006.007G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119. G. Da Costa A. Oleksiak W. Piatek J. Salom and L. Sisó. 2015. Minimization of costs and energy consumption in a data center by a workload-based capacity management. In Energy Efficient Data Centers S. Klingert M. Chinnici and M. Rey Porto (Eds.). Springer International Publishing Cham 102--119.Cupertino, L., Da Costa, G., Oleksiak, A., Pia¸tek, W., Pierson, J.-M., Salom, J., … Zilio, T. (2015). Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach and evaluation results. Ad Hoc Networks, 25, 535-553. doi:10.1016/j.adhoc.2014.11.002Dally, W. J. (1991). Express cubes: improving the performance of k-ary n-cube interconnection networks. IEEE Transactions on Computers, 40(9), 1016-1023. doi:10.1109/12.83652Dauwe, D., Pasricha, S., Maciejewski, A. A., & Siegel, H. J. (2018). Resilience-Aware Resource Management for Exascale Computing Systems. IEEE Transactions on Sustainable Computing, 3(4), 332-345. doi:10.1109/tsusc.2018.2797890R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814 R. I. Davis and A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Comput. Surv. 43 4 Article 35 (Oct. 2011) 44 pages. DOI:https://doi.org/10.1145/1978802.1978814Di, S., & Cappello, F. (2016). Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Transactions on Parallel and Distributed Systems, 27(10), 2809-2823. doi:10.1109/tpds.2016.2517639Di, S., Guo, H., Gupta, R., Pershey, E. R., Snir, M., & Cappello, F. (2019). Exploring Properties and Correlations of Fatal Events in a Large-Scale HPC System. IEEE Transactions on Parallel and Distributed Systems, 30(2), 361-374. doi:10.1109/tpds.2018.2864184Di, S., Robert, Y., Vivien, F., & Cappello, F. (2017). Toward an Optimal Online Checkpoint Solution under a Two-Level HPC Checkpoint Model. IEEE Transactions on Parallel and Distributed Systems, 28(1), 244-259. doi:10.1109/tpds.2016.2546248J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer. J. Dongarra T. Herault and Y. Robert. 2015. Fault Tolerance Techniques for High-Performance Computing. Springer.DOWNING, S., & SOCIE, D. (1982). Simple rainflow counting algorithms. International Journal of Fatigue, 4(1), 31-40. doi:10.1016/0142-1123(82)90018-4Eghbalkhah, B., Kamal, M., Afzali-Kusha, H., Afzali-Kusha, A., Ghaznavi-Ghoushchi, M. B., & Pedram, M. (2015). Workload and temperature dependent evaluation of BTI-induced lifetime degradation in digital circuits. Microelectronics Reliability, 55(8), 1152-1162. doi:10.1016/j.microrel.2015.06.004Gottscho, M., Shoaib, M., Govindan, S., Sharma, B., Wang, D., & Gupta, P. (2017). Measuring the Impact of Memory Errors on Application  Performance. IEEE Computer Architecture Letters, 16(1), 51-55. doi:10.1109/lca.2016.2599513Greenberg, A., Hamilton, J. R., Jain, N., Kandula, S., Kim, C., Lahiri, P., … Sengupta, S. (2011). VL2. Communications of the ACM, 54(3), 95-104. doi:10.1145/1897852.1897877Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G., … Stanley, K. S. (2005). An overview of the Trilinos project. ACM Transactions on Mathematical Software, 31(3), 397-423. doi:10.1145/1089014.1089021Hoffmann, G. A., Trivedi, K. S., & Malek, M. (2007). A Best Practice Guide to Resource Forecasting for Computing Systems. IEEE Transactions on Reliability, 56(4), 615-628. doi:10.1109/tr.2007.909764Hsiao, M. Y., Carter, W. C., Thomas, J. W., & Stringfellow, W. R. (1981). Reliability, Availability, and Serviceability of IBM Computer Systems: A Quarter Century of Progress. IBM Journal of Research and Development, 25(5), 453-468. doi:10.1147/rd.255.0453Hughes, G. F., Murray, J. F., Kreutz-Delgado, K., & Elkan, C. (2002). Improved disk-drive failure warnings. IEEE Transactions on Reliability, 51(3), 350-357. doi:10.1109/tr.2002.802886S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301 S. Hukerikar and C. Engelmann. 2017. Resilience design patterns: A structured approach to resilience at extreme scale. Supercomput. Front. Innov. 4 3 (2017). DOI:https://doi.org/10.14529/jsfi170301Hussain, H., Malik, S. U. R., Hameed, A., Khan, S. U., Bickler, G., Min-Allah, N., … Rayes, A. (2013). A survey on resource allocation in high performance distributed computing systems. Parallel Computing, 39(11), 709-736. doi:10.1016/j.parco.2013.09.009Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html. Intel Corporation. [n.d.]. Intel Xeon Processor E7 Family: Reliability Availability and Serviceability. White paper. https://www.intel.com/content/www/us/en/processors/xeon/xeon-e7-family-ras-server-paper.html.Jha, S., Formicola, V., Martino, C. D., Dalton, M., Kramer, W. T., Kalbarczyk, Z., & Iyer, R. K. (2018). Resiliency of HPC Interconnects: A Case Study of Interconnect Failures and Recovery in Blue Waters. IEEE Transactions on Dependable and Secure Computing, 15(6), 915-930. doi:10.1109/tdsc.2017.2737537Kiciman, E., & Fox, A. (2005). Detecting Application-Level Failures in Component-Based Internet Services. IEEE Transactions on Neural Networks, 16(5), 1027-1041. doi:10.1109/tnn.2005.853411Kim, T., Sun, Z., Cook, C., Zhao, H., Li, R., Wong, D., & Tan, S. X.-D. (2016). Invited - Cross-layer modeling and optimization for electromigration induced reliability. Proceedings of the 53rd Annual Design Automation Conference. doi:10.1145/2897937.2905010Kurowski, K., Oleksiak, A., Piątek, W., Piontek, T., Przybyszewski, A., & Węglarz, J. (2013). DCworms – A tool for simulation of energy efficiency in distributed computing infrastructures. Simulation Modelling Practice and Theory, 39, 135-151. doi:10.1016/j.simpat.2013.08.007Langou, J., Chen, Z., Bosilca, G., & Dongarra, J. (2008). Recovery Patterns for Iterative Methods in a Parallel Unstable Environment. SIAM Journal on Scientific Computing, 30(1), 102-116. doi:10.1137/040620394J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin. J. C. Laprie (Ed.). 1995. Dependability—Its Attributes Impairments and Means. Springer-Verlag Berlin.Laprie, J.-C. (s. f.). DEPENDABLE COMPUTING AND FAULT TOLERANCE : CONCEPTS AND TERMINOLOGY. Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. doi:10.1109/ftcsh.1995.532603Lasance, C. J. M. (2003). Thermally driven reliability issues in microelectronic systems: status-quo and challenges. Microelectronics Reliability, 43(12), 1969-1974. doi:10.1016/s0026-2714(03)00183-5Yinglung Liang, Yanyong Zhang, Sivasubramaniam, A., Jette, M., & Sahoo, R. (s. f.). BlueGene/L Failure Analysis and Prediction Models. International Conference on Dependable Systems and Networks (DSN’06). doi:10.1109/dsn.2006.18Lin, T.-T. Y., & Siewiorek, D. P. (1990). Error log analysis: statistical modeling and heuristic trend analysis. IEEE Transactions on Reliability, 39(4), 419-432. doi:10.1109/24.58720Losada, N., González, P., Martín, M. J., Bosilca, G., Bouteiller, A., & Teranishi, K. (2020). Fault tolerance of MPI applications in exascale systems: The ULFM solution. Future Generation Computer Systems, 106, 467-481. doi:10.1016/j.future.2020.01.026Lyons, R. E., & Vanderkulk, W. (1962). The Use of Triple-Modular Redundancy to Improve Computer Reliability. IBM Journal of Research and Development, 6(2), 200-209. doi:10.1147/rd.62.0200M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281. M. Médard and S. S. Lumetta. 2003. Network Reliability and Fault Tolerance. American Cancer Society. Retrieved from arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471219282.eot281.Moody, A., Bronevetsky, G., Mohror, K., & de Supinski, B. (2010). Detailed Modeling, Design, and Evaluation of a Scalable Multi-level Checkpointing System. doi:10.2172/984082Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf. Moor Insights 8 Strategy. 2017. AMD EPYC Brings New RAS Capability. White paper. Retrieved from https://www.amd.com/system/files/2017-06/AMD-EPYC-Brings-New-RAS-Capability.pdf.Mulas, F., Atienza, D., Acquaviva, A., Carta, S., Benini, L., & De Micheli, G. (2009). Thermal Balancing Policy for Multiprocessor Stream Computing Platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 28(12), 1870-1882. doi:10.1109/tcad.2009.2032372Oleksiak, A., Kierzynka, M., Piatek, W., Agosta, G., Barenghi, A., Brandolese, C., … Janssen, U. (2017). M2DC – Modular Microserver DataCentre with heterogeneous hardware. Microprocessors and Microsystems, 52, 117-130. doi:10.1016/j.micpro.2017.05.019Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Siegel, H. J., Burns, P. J., & Koenig, G. A. (2018). Rate-based thermal, power, and co-location aware resource management for heterogeneous data centers. Journal of Parallel and Distributed Computing, 112, 126-139. doi:10.1016/j.jpdc.2017.04.015K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811 K. O’brien I. Pietri R. Reddy A. Lastovetsky and R. Sakellariou. 2017. A survey of power and energy predictive models in HPC systems and applications. ACM Comput. Surv. 50 3 Article 37 (June 2017) 38 pages. DOI:https://doi.org/10.1145/3078811Park, S.-M., & Humphrey, M. (2011). Predictable High-Performance Computing Using Feedback Control and Admission Control. IEEE Transactions on Parallel and Distributed Systems, 22(3), 396-411. doi:10.1109/tpds.2010.100Pfefferman, J. D., & Cernuschi-Frias, B. (2002). A nonparametric nonstationary procedure for failure prediction. IEEE Transactions on Reliability, 51(4), 434-442. doi:10.1109/tr.2002.804733Rangan, K. K., Wei, G.-Y., & Brooks, D. (2009). Thread motion. ACM SIGARCH Computer Architecture News, 37(3), 302-313. doi:10.1145/1555815.1555793Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf. Paolo Rech. [n.d.]. Reliability Issues in Current and Future Supercomputers. Retrieved from http://energysfe.ufsc.br/slides/Paolo-Rech-260917.pdf.F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714 F. Reghenzani G. Massari and W. Fornaciari. 2019. The real-time Linux kernel: A survey on PREEMPT_RT. Comput. Surveys 52 1 Article 18 (Feb. 2019) 36 pages. DOI:https://doi.org/10.1145/3297714F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680 F. Salfner M. Lenk and M. Malek. 2010. A survey of online failure prediction methods. ACM Comput. Surv. 42 3 Article 10 (March 2010) 42 pages. DOI:https://doi.org/10.1145/1670679.1670680Salfner, F., Schieschke, M., & Malek, M. (2006). Predicting failures of computer systems: a case study for a telecommunication system. Proceedings 20th IEEE International Parallel & Distributed Processing Symposium. doi:10.1109/ipdps.2006.1639672Shi, L., Chen, H., Sun, J., & Li, K. (2012). vCUDA: GPU-Accelerated High-Performance Computing in Virtual Machines. IEEE Transactions on Computers, 61(6), 804-816. doi:10.1109/tc.2011.112D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd. D. P. Siewiorek and R. S. Swarz. 1998. Reliable Computer Systems 3rd ed. A. K. Peters Ltd.Singh, S., & Chana, I. (2016). A Survey on Resource Scheduling in Cloud Computing: Issues and Challenges. Journal of Grid Computing, 14(2), 217-264. doi:10.1007/s10723-015-9359-2Slegel, T. J., Averill, R. M., Check, M. A., Giamei, B. C., Krumm, B. W., Krygowski, C. A., … Webb, C. F. (1999). IBM’s S/390 G5 microprocessor design. IEEE Micro, 19(2), 12-23. doi:10.1109/40.755464Sridhar, A., Sabry, M. M., & Atienza, D. (2014). A Semi-Analytical Thermal Modeling Framework for Liquid-Cooled ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 33(8), 1145-1158. doi:10.1109/tcad.2014.2323194Sridharan, V., DeBardeleben, N., Blanchard, S., Ferreira, K. B., Stearley, J., Shalf, J., & Gurumurthi, S. (2015). Memory Errors in Modern Systems. ACM SIGARCH Computer Architecture News, 43(1), 297-310. doi:10.1145/2786763.2694348Stathis, J. H. (2018). The physics of NBTI: What do we really know? 2018 IEEE International Reliability Physics Symposium (IRPS). doi:10.1109/irps.2018.8353539Stellner, G. (s. f.). CoCheck: checkpointing and process migration for MPI. Proceedings of International Conference on Parallel Processing. doi:10.1109/ipps.1996.508106Stone, J. E., Gohara, D., & Shi, G. (2010). OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems. Computing in Science & Engineering, 12(3), 66-73. doi:10.1109/mcse.2010.69Subasi, O., Di, S., Bautista-Gomez, L., Balaprakash, P., Unsal, O., Labarta, J., … Cappello, F. (2018). Exploring the capabilities of support vector machines in detecting silent data corruptions. Sustainable Computing: Informatics and Systems, 19, 277-290. doi:10.1016/j.suscom.2018.01.004Tang, D., & Iyer, R. K. (1993). Dependability measurement and modeling of a multicomputer system. IEEE Transactions on Computers, 42(1), 62-75. doi:10.1109/12.192214D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf. D. Turnbull and N. Alldrin. 2003. Failure Prediction in Hardware Systems. Tech. rep. University of California San Diego CA. Retrieved from http://www.cs.ucsd.edu/ dturnbul/Papers/ServerPrediction.pdf.Vilalta, R., Apte, C. V., Hellerstein, J. L., Ma, S., & Weiss, S. M. (2002). Predictive algorithms in the management of computer systems. IBM Systems Journal, 41(3), 461-474. doi:10.1147/sj.413.0461Vinoski, S. (2007). Reliability with Erlang. IEEE Internet Com

    APRE: A Replication Method for Unstructured P2P Networks

    Get PDF
    We present APRE, a replication method for structureless Peer-to-Peer overlays. The goal of our method is to achieve real-time replication of even the most sparsely located content relative to demand. APRE adaptively expands or contracts the replica set of an object in order to improve the sharing process and achieve a low load distribution among the providers. To achieve that, it utilizes search knowledge to identify possible replication targets inside query-intensive areas of the overlay. We present detailed simulation results where APRE exhibits both efficiency and robustness relative to the number of requesters and the respective request rates. The scheme proves particularly useful in the event of flash crowds, managing to quickly adapt to sudden surges in load

    Modern computing: Vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress

    Migration of networks

    Get PDF
    Tese de mestrado em Engenharia Informática, Universidade de Lisboa, Faculdade de Ciências, 2021A forma como os recursos computacionais são geridos, mais propriamente os alojados nos grandes centros de dados, tem vindo, nos últimos anos, a evoluir. As soluções iniciais que passavam por aplicações a correr em grandes servidores físicos, comportavam elevados custos não só de aquisição, mas também, e principalmente, de manutenção. A razão chave por trás deste facto prendia-se em grande parte com uma utilização largamente ineficiente dos recursos computacionais disponíveis. No entanto, o surgimento de tecnologias de virtualização de servidores foi o volte-face necessário para alterar radicalmente o paradigma até aqui existente. Isto não só levou a que os operadores dos grandes centros de dados pudessem passar a alugar os seus recursos computacionais, criando assim uma interessante oportunidade de negócio, mas também permitiu potenciar (e facilitar) negócios dos clientes. Do ponto de vista destes, os benefícios são evidentes: poder alugar recursos, num modelo pay-as-you-go, evita os elevados custos de capital necessários para iniciar um novo serviço. A este novo conceito baseado no aluguer e partilha de recursos computacionais a terceiros dá-se o nome de computação em nuvem (“cloud computing”). Como referimos anteriormente, nada disto teria sido possível sem o aparecimento de tecnologias de virtualização, que permitem o desacoplamento dos serviços dos utilizadores do hardware que os suporta. Esta tecnologia tem-se revelado uma ferramenta fundamental na administração e manutenção dos recursos disponíveis em qualquer centro de dados. Por exemplo, a migração de máquinas virtuais facilita tarefas como a manutenção das infraestruturas, a distribuição de carga, a tolerância a faltas, entre outras primitivas operacionais, graças ao desacoplamento entre as máquinas virtuais e as máquinas físicas, e à consequente grande mobilidade que lhes é assim conferida. Atualmente, muitas aplicações e serviços alojados na nuvem apresentam dimensão e complexidade considerável. O serviço típico é composto por diversos componentes que se complementam de forma a cumprir um determinado propósito. Por exemplo, diversos serviços são baseados numa topologia de vários níveis, composta por múltiplos servidores web, balanceadores de carga e bases de dados distribuídas e replicadas. Daqui resulta uma forte ligação e dependência dos vários elementos deste sistema e das infraestruturas de comunicação e de rede que os suportam. Esta forte dependência da rede vem limitar grandemente a flexibilidade e mobilidade das máquinas virtuais, o que, por sua vez, restringe inevitavelmente o seu reconhecido potencial. Esta dependência é particularmente afetada pela reduzida flexibilidade que a gestão e o controlo das redes apresentam atualmente, levando a que o processo de migração de máquinas virtuais se torne num demorado processo que apresenta restrições que obrigam à reconfiguração da rede, operação esta que, muitas vezes, é assegurada por um operador humano (de que pode resultar, por exemplo, a introdução de falhas). Num cenário ideal, a infraestrutura de redes de que depende a comunicação entre as máquinas virtuais seria também ela virtual, abstraindo os recursos necessários à comunicação, o que conferiria à globalidade do sistema uma maior flexibilidade e mobilidade que, por sua vez, permitiria a realização de uma migração conjunta das referidas máquinas virtuais e da infraestrutura de rede que as suporta. Neste contexto, surgem as redes definidas por software (SDN) [34], uma nova abordagem às redes de computadores que propõe separar a infraestrutura responsável pelo encaminhamento do tráfego (o plano de dados) do plano de controlo, planos que, até aqui, se encontravam acoplados nos elementos de rede (switches e routers). O controlo passa assim para um grupo de servidores, o que permite criar uma centralização lógica do controlo da rede. Uma SDN consegue então oferecer uma visão global da rede e do seu respetivo estado, característica fundamental para permitir o desacoplamento necessário entre a infraestrutura física e virtual. Recentemente, várias soluções de virtualização de rede foram propostas (e.g., VMware NSX [5], Microsoft AccelNet [21] e Google Andromeda [2]), ancoradas na centralização oferecida por uma SDN. No entanto, embora estas plataformas permitam virtualizar a rede, nenhuma delas trata o problema da migração dos seus elementos, limitando a sua flexibilidade. O objetivo desta dissertação passa então por implementar e avaliar soluções de migração de redes recorrendo a SDNs. A ideia é migrar um dispositivo de rede (neste caso, um switch virtual), escolhido pelo utilizador, de modo transparente, quer para os serviços que utilizam a rede, evitando causar disrupção, quer para as aplicações de controlo SDN da rede. O desafio passa por migrar o estado mantido no switch de forma consistente e sem afetar o normal funcionamento da rede. Com esse intuito, implementámos e avaliámos três diferentes abordagens à migração ( freeze and copy, move e clone) e discutimos as vantagens e desvantagens de cada uma. É de realçar que a solução baseada em clonagem se encontra incorporada como um módulo do virtualizador de rede Sirius.The way computational resources are managed, specifically those in big data centers, has been evolving in the last few years. One of the big stepping-stones for this was the emergence of server virtualization technologies that, given their ability to decouple software from the hardware, allowed for big data center operators to rent their resources, which, in its turn, represented an interesting business opportunity for both the operators and their potential customers. This new concept that consists in renting computational resources is called cloud computing. Furthermore, with the possibility that later arose of live migrating virtual machines, be it by customer request (for example, to move their service closer to the target consumer) or by provider decision (for example, to execute scheduled rack maintenances without downtimes), this new paradigm presented really strong arguments in comparison with traditional hosting solutions. Today, most cloud applications have considerable dimension and complexity. This complexity results in a strong dependency between the system elements and the communication infrastructure that lays underneath. This strong network dependency greatly limits the flexibility and mobility of the virtual machines (VMs). This dependency is mainly due to the reduced flexibility of current network management and control, turning the VM migration process into a long and error prone procedure. From a network’s perspective however, software-defined networks (SDNs) [34] manage to provide tools and mechanisms that can go a long way to mitigate this limitation. SDN proposes the separation of the forwarding infrastructure from the control plane as a way to tackle the flexibility problem. Recently, several network virtualization solutions were proposed (e.g., VMware NSX [5], Microsoft AccelNet [21] and Google Andromeda [2]), all supported on the logical centralization offered by an SDN. However, while allowing for network virtualization, none of these platforms addressed the problem of migrating the virtual networks, which limits their functionality. The goal of this dissertation is to implement and evaluate network migration solutions using SDNs. These solutions should allow for the migration of a network element (a virtual switch), chosen by the user, transparently, both for the services that are actively using the network and for the SDN applications that control the network. The challenge is to migrate the virtual element’s state in a consistent manner, whilst not affecting the normal operation of the network. With that in mind, we implemented and evaluated three different migration approaches (freeze and copy, move and clone), and discussed their respective advantages and disadvantages. It is relevant to mention that the cloning approach we implemented and evaluated is incorporated as a module of the network virtualization platform Sirius

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future

    SoK: Log Based Transparency Enhancing Technologies

    Full text link
    This paper systematizes log based Transparency Enhancing Technologies. Based on established work on transparency from multiple disciplines we outline the purpose, usefulness, and pitfalls of transparency. We outline the mechanisms that allow log based transparency enhancing technologies to be implemented, in particular logging mechanisms, sanitisation mechanisms and the trade-offs with privacy, data release and query mechanisms, and how transparency relates to the external mechanisms that can provide the ability to contest a system and hold system operators accountable. We illustrate the role these mechanisms play with two case studies, Certificate Transparency and cryptocurrencies, and show the role that transparency plays in their function as well as the issues these systems face in delivering transparency

    Creation of value with open source software in the telecommunications field

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Autonomic Overload Management For Large-Scale Virtualized Network Functions

    Get PDF
    The explosion of data traffic in telecommunication networks has been impressive in the last few years. To keep up with the high demand and staying profitable, Telcos are embracing the Network Function Virtualization (NFV) paradigm by shifting from hardware network appliances to software virtual network functions, which are expected to support extremely large scale architectures, providing both high performance and high reliability. The main objective of this dissertation is to provide frameworks and techniques to enable proper overload detection and mitigation for the emerging virtualized software-based network services. The thesis contribution is threefold. First, it proposes a novel approach to quickly detect performance anomalies in complex and large-scale VNF services. Second, it presents NFV-Throttle, an autonomic overload control framework to protect NFV services from overload within a short period of time, allowing to preserve the QoS of traffic flows admitted by network services in response to both traffic spikes (up to 10x the available capacity) and capacity reduction due to infrastructure problems (such as CPU contention). Third, it proposes DRACO, to manage overload problems arising in novel large-scale multi-tier applications, such as complex stateful network functions in which the state is spread across modern key-value stores to achieve both scalability and performance. DRACO performs a fine-grained admission control, by tuning the amount and type of traffic according to datastore node dependencies among the tiers (which are dynamically discovered at run-time), and to the current capacity of individual nodes, in order to mitigate overloads and preventing hot-spots. This thesis presents the implementation details and an extensive experimental evaluation for all the above overload management solutions, by means of a virtualized IP Multimedia Subsystem (IMS), which provides modern multimedia services for Telco operators, such as Videoconferencing and VoLTE, and which is one of the top use-cases of the NFV technology

    Towards Safe and Secure Autonomous and Cooperative Vehicle Ecosystems

    Get PDF
    Semi-autonomous driver assists are already widely deployed and fully autonomous cars are progressively leaving the realm of laboratories. This evolution coexists with a progressive connectivity and cooperation, creating important safety and security challenges, the latter ranging from casual hackers to highly-skilled attackers, requiring a holistic analysis, under the perspective of fully-fledged ecosystems of autonomous and cooperative vehicles. This position paper attempts at contributing to a better understanding of the global threat plane and the specific threat vectors designers should be at- tentive to. We survey paradigms and mechanisms that may be used to overcome or at least mitigate the potential risks that may arise through the several threat vectors analyzed
    corecore