121 research outputs found

    Enhanced Distributed File Replication Protocol for Efficient File Sharing in Wireless Mobile Ad-Hoc Networks.

    Get PDF
    File sharing applications in mobile unintended networks (MANETs) have attracted additional and additional attention in recent years. The potency of file querying suffers from the distinctive properties of such networks as well as node quality and restricted communication vary and resource. associate degree intuitive methodology to alleviate this drawback is to form file replicas within the network. However, despite the efforts on file replication, no analysis has targeted on the worldwide optimum duplicate creation with minimum average querying delay. Specifically, current file replication protocols in mobile unintended networks have 2 shortcomings. First, they lack a rule to portion restricted resources to completely different files so as to reduce the typical querying delay. Second, they merely contemplate storage as offered resources for replicas, however neglect the actual fact that the file holders’ frequency of meeting different nodes additionally plays a crucial role in deciding file availableness. Actually, a node that contains a higher meeting frequency with others provides higher availableness to its files. This becomes even additional evident in sparsely distributed MANETs, during which nodes meet disruptively. during this paper, we have a tendency to introduce a replacement conception of resource for file replication, that considers each node storage and meeting frequency. we have a tendency to on paper study the influence of resource allocation on the typical querying delay and derive a resource allocation rule to reduce the typical querying delay. we have a tendency to additional propose a distributed file replication protocol to appreciate the projected rule. intensive trace-driven experiments with synthesized traces and real traces show that our protocol are able to do shorter average querying delay at a lower value than current replication protocols

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Autonomous Gossiping: A self-organizing epidemic algorithm for selective information dissemination in mobile ad-hoc networks

    Get PDF
    We introduce autonomous gossiping (A/G), a new genre epidemic algorithm for selective dissemination of information in contrast to previous usage of epidemic algorithms which flood the whole network. A/G is a paradigm which suits well in a mobile ad-hoc networking (MANET) environment because it does not require any infrastructure or middleware like multicast tree and (un)subscription maintenance for publish/subscribe, but uses ecological and economic principles in a self-organizing manner in order to achieve its selectivity. The trade-off of using an infrastructure-less self-organizing mechanism like A/G is that it does not guarantee completeness deterministically as is one of the original objectives of alternate selective dissemination schemes like publish/subscribe. We argue that such incompleteness is not a problem in many non-critical real-life civilian application scenarios and realistic node mobility patterns, where the overhead of infrastructure maintenance may outweigh the benefits of completeness, more over, at present there exists no mechanism to realize publish/subscribe or other paradigms for selective dissemination in MANET environments. A/G's reliance and hence vulnerability on cooperation of mobile nodes is also much less as compared to other possible schemes using routing information, since it does not expect node philanthropy for forwarding/carrying information, but only cooperation to the extent that nodes already carrying the information pass it on to other suitable ones. Thus autonomous gossiping is expected to be a light-weight infrastructure-less information dissemination service for MANETs, and hence support any-to-many communication (flexible casting) without the need to establish and maintain separate routing information (e.g., multicast trees)

    Resource management for next generation multi-service mobile network

    Get PDF

    Peer-to-peer overlay in mobile ad-hoc networks

    Get PDF
    Wireless multi-hop networks such as mobile ad-hoc (MANET) or wireless mesh networks (WMN) have attracted big research efforts during the last years as they have huge potential in several areas such as military communications, fast infrastructure replacement during emergency operations, extension of hotspots or as an alternative communication system. Due to various reasons, such as characteristics of wireless links, multi-hop forwarding operation, and mobility of nodes, performance of traditional peer-to-peer applications is rather low in such networks. In this book chapter, we provide a comprehensive and in-depth survey on recent research on various approaches to provide peer-to-peer services in wireless multi-hop networks. The causes and problems for low performance of traditional approaches are discussed. Various representative alternative approaches to couple interactions between the peer-to-peer overlay and the network layer are examined and compared. Some open questions are discussed to stimulate further research in this area. © 2010 Springer Science+Business Media, LLC

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks
    • …
    corecore