296 research outputs found

    Scalable service for flexible access to personal content

    Get PDF

    Quality-driven management of video streaming services in segment-based cache networks

    Get PDF

    Joint content placement and storage allocation based on federated learning in F-RANs

    Get PDF
    Funding: This work was supported in part by Innovation Project of the Common Key Technology of Chongqing Science and Technology Industry (cstc2018jcyjAX0383), the special fund of Chongqing key laboratory (CSTC), and the Funding of CQUPT (A2016-83, GJJY19-2-23, A2020-270).Peer reviewedPublisher PD

    Proactive content caching in future generation communication networks: Energy and security considerations

    Get PDF
    The proliferation of hand-held devices and Internet of Things (IoT) applications has heightened demand for popular content download. A high volume of content streaming/downloading services during peak hours can cause network congestion. Proactive content caching has emerged as a prospective solution to tackle this congestion problem. In proactive content caching, data storage units are used to store popular content in helper nodes at the network edge. This contributes to a reduction of peak traffic load and network congestion. However, data storage units require additional energy, which offers a challenge to researchers that intend to reduce energy consumption up to 90% in next generation networks. This thesis presents proactive content caching techniques to reduce grid energy consumption by utilizing renewable energy sources to power-up data storage units in helper nodes. The integration of renewable energy sources with proactive caching is a significant challenge due to the intermittent nature of renewable energy sources and investment costs. In this thesis, this challenge is tackled by introducing strategies to determine the optimal time of the day for content caching and optimal scheduling of caching nodes. The proposed strategies consider not only the availability of renewable energy but also temporal changes in network trac to reduce associated energy costs. While proactive caching can facilitate the reduction of peak trac load and the integration of renewable energy, cached content objects at helper nodes are often more vulnerable to malicious attacks due to less stringent security at edge nodes. Potential content leakage can lead to catastrophic consequences, particularly for cache-equipped Industrial Internet of Things (IIoT) applications. In this thesis, the concept of \trusted caching nodes (TCNs) is introduced. TCNs cache popular content objects and provide security services to connected links. The proposed study optimally allocates TCNs and selects the most suitable content forwarding paths. Furthermore, a caching strategy is designed for mobile edge computing systems to support IoT task offloading. The strategy optimally assigns security resources to offloaded tasks while satisfying their individual requirements. However, security measures often contribute to overheads in terms of both energy consumption and delay. Consequently, in this thesis, caching techniques have been designed to investigate the trade-off between energy consumption and probable security breaches. Overall, this thesis contributes to the current literature by simultaneously investigating energy and security aspects of caching systems whilst introducing solutions to relevant research problems

    Optimization of Caching Devices with Geometric Constraints

    Get PDF
    International audienceIt has been recently advocated that in large communication systems it is beneficial both for the users and for the network as a whole to store content closer to users. One particular implementation of such an approach is to co-locate caches with wireless base stations. In this paper we study geographically distributed caching of a fixed collection of files. We model cache placement with the help of stochastic geometry and optimize the allocation of storage capacity among files in order to minimize the cache miss probability. We consider both per cache capacity constraints as well as an average capacity constraint over all caches. The case of per cache capacity constraints can be efficiently solved using dynamic programming, whereas the case of the average constraint leads to a convex optimization problem. We demonstrate that the average constraint leads to significantly smaller cache miss probability. Finally, we suggest a simple LRU-based policy for geographically distributed caching and show that its performance is close to the optimal

    Hit and Bandwidth Optimal Caching for Wireless Data Access Networks

    Get PDF
    For many data access applications, the availability of the most updated information is a fundamental and rigid requirement. In spite of many technological improvements, in wireless networks, wireless channels (or bandwidth) are the most scarce resources and hence are expensive. Data access from remote sites heavily depends on these expensive resources. Due to affordable smart mobile devices and tremendous popularity of various Internet-based services, demand for data from these mobile devices are growing very fast. In many cases, it is becoming impossible for the wireless data service providers to satisfy the demand for data using the current network infrastructures. An efficient caching scheme at the client side can soothe the problem by reducing the amount of data transferred over the wireless channels. However, an update event makes the associated cached data objects obsolete and useless for the applications. Frequencies of data update, as well as data access play essential roles in cache access and replacement policies. Intuitively, frequently accessed and infrequently updated objects should be given higher preference while preserving in the cache. However, modeling this intuition is challenging, particularly in a network environment where updates are injected by both the server and the clients, distributed all over networks. In this thesis, we strive to make three inter-related contributions. Firstly, we propose two enhanced cache access policies. The access policies ensure strong consistency of the cached data objects through proactive or reactive interactions with the data server. At the same time, these policies collect information about access and update frequencies of hosted objects to facilitate efficient deployment of the cache replacement policy. Secondly, we design a replacement policy which plays the decision maker role when there is a new object to accommodate in a fully occupied cache. The statistical information collected by the access policies enables the decision making process. This process is modeled around the idea of preserving frequently accessed but less frequently updated objects in the cache. Thirdly, we analytically show that a cache management scheme with the proposed replacement policy bundled with any of the cache access policies guarantees optimum amount of data transmission by increasing the number of effective hits in the cache system. Results from both analysis and our extensive simulations demonstrate that the proposed policies outperform the popular Least Frequently Used (LFU) policy in terms of both effective hits and bandwidth consumption. Moreover, our flexible system model makes the proposed policies equally applicable to applications for the existing 3G, as well as upcoming LTE, LTE Advanced and WiMAX wireless data access networks

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead

    The Role of Caching in Future Communication Systems and Networks

    Get PDF
    This paper has the following ambitious goal: to convince the reader that content caching is an exciting research topic for the future communication systems and networks. Caching has been studied for more than 40 years, and has recently received increased attention from industry and academia. Novel caching techniques promise to push the network performance to unprecedented limits, but also pose significant technical challenges. This tutorial provides a brief overview of existing caching solutions, discusses seminal papers that open new directions in caching, and presents the contributions of this special issue. We analyze the challenges that caching needs to address today, also considering an industry perspective, and identify bottleneck issues that must be resolved to unleash the full potential of this promising technique
    • …
    corecore