848 research outputs found

    Combining privileged information to improve context-aware recommender systems

    Get PDF
    A recommender system is an information filtering technology which can be used to predict preference ratings of items (products, services, movies, etc) and/or to output a ranking of items that are likely to be of interest to the user. Context-aware recommender systems (CARS) learn and predict the tastes and preferences of users by incorporating available contextual information in the recommendation process. One of the major challenges in context-aware recommender systems research is the lack of automatic methods to obtain contextual information for these systems. Considering this scenario, in this paper, we propose to use contextual information from topic hierarchies of the items (web pages) to improve the performance of context-aware recommender systems. The topic hierarchies are constructed by an extension of the LUPI-based Incremental Hierarchical Clustering method that considers three types of information: traditional bag-of-words (technical information), and the combination of named entities (privileged information I) with domain terms (privileged information II). We evaluated the contextual information in four context-aware recommender systems. Different weights were assigned to each type of information. The empirical results demonstrated that topic hierarchies with the combination of the two kinds of privileged information can provide better recommendations.FAPESP (grant #2010/20564-8, #2012/13830-9, and #2013/16039-3, São Paulo Research Foundation (FAPESP))CAPE

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    Personalization in cultural heritage: the road travelled and the one ahead

    Get PDF
    Over the last 20 years, cultural heritage has been a favored domain for personalization research. For years, researchers have experimented with the cutting edge technology of the day; now, with the convergence of internet and wireless technology, and the increasing adoption of the Web as a platform for the publication of information, the visitor is able to exploit cultural heritage material before, during and after the visit, having different goals and requirements in each phase. However, cultural heritage sites have a huge amount of information to present, which must be filtered and personalized in order to enable the individual user to easily access it. Personalization of cultural heritage information requires a system that is able to model the user (e.g., interest, knowledge and other personal characteristics), as well as contextual aspects, select the most appropriate content, and deliver it in the most suitable way. It should be noted that achieving this result is extremely challenging in the case of first-time users, such as tourists who visit a cultural heritage site for the first time (and maybe the only time in their life). In addition, as tourism is a social activity, adapting to the individual is not enough because groups and communities have to be modeled and supported as well, taking into account their mutual interests, previous mutual experience, and requirements. How to model and represent the user(s) and the context of the visit and how to reason with regard to the information that is available are the challenges faced by researchers in personalization of cultural heritage. Notwithstanding the effort invested so far, a definite solution is far from being reached, mainly because new technology and new aspects of personalization are constantly being introduced. This article surveys the research in this area. Starting from the earlier systems, which presented cultural heritage information in kiosks, it summarizes the evolution of personalization techniques in museum web sites, virtual collections and mobile guides, until recent extension of cultural heritage toward the semantic and social web. The paper concludes with current challenges and points out areas where future research is needed

    Context-aware Knowledge-based Systems: A Literature Review

    Get PDF
    Context awareness systems, a subcategory of intelligent systems, are concerned with suggesting relevant products/services to users' situations as smart services. One key element for improving smart services’ quality is to organize and manipulate contextual data in an appropriate manner to facilitate knowledge generation from these data. In this light, a knowledge-based approach, can be used as a key component in context-aware systems. Context awareness and knowledge-based systems, in fact, have been gaining prominence in their respective domains for decades. However, few studies have focused on how to reconcile the two fields to maximize the benefits of each field. For this reason, the objective of this paper is to present a literature review of how context-aware systems, with a focus on the knowledge-based approach, have recently been conceptualized to promote further research in this area. In the end, the implications and current challenges of the study will be discussed

    mARC: Memory by Association and Reinforcement of Contexts

    Full text link
    This paper introduces the memory by Association and Reinforcement of Contexts (mARC). mARC is a novel data modeling technology rooted in the second quantization formulation of quantum mechanics. It is an all-purpose incremental and unsupervised data storage and retrieval system which can be applied to all types of signal or data, structured or unstructured, textual or not. mARC can be applied to a wide range of information clas-sification and retrieval problems like e-Discovery or contextual navigation. It can also for-mulated in the artificial life framework a.k.a Conway "Game Of Life" Theory. In contrast to Conway approach, the objects evolve in a massively multidimensional space. In order to start evaluating the potential of mARC we have built a mARC-based Internet search en-gine demonstrator with contextual functionality. We compare the behavior of the mARC demonstrator with Google search both in terms of performance and relevance. In the study we find that the mARC search engine demonstrator outperforms Google search by an order of magnitude in response time while providing more relevant results for some classes of queries

    Real-time Short Video Recommendation on Mobile Devices

    Full text link
    Short video applications have attracted billions of users in recent years, fulfilling their various needs with diverse content. Users usually watch short videos on many topics on mobile devices in a short period of time, and give explicit or implicit feedback very quickly to the short videos they watch. The recommender system needs to perceive users' preferences in real-time in order to satisfy their changing interests. Traditionally, recommender systems deployed at server side return a ranked list of videos for each request from client. Thus it cannot adjust the recommendation results according to the user's real-time feedback before the next request. Due to client-server transmitting latency, it is also unable to make immediate use of users' real-time feedback. However, as users continue to watch videos and feedback, the changing context leads the ranking of the server-side recommendation system inaccurate. In this paper, we propose to deploy a short video recommendation framework on mobile devices to solve these problems. Specifically, we design and deploy a tiny on-device ranking model to enable real-time re-ranking of server-side recommendation results. We improve its prediction accuracy by exploiting users' real-time feedback of watched videos and client-specific real-time features. With more accurate predictions, we further consider interactions among candidate videos, and propose a context-aware re-ranking method based on adaptive beam search. The framework has been deployed on Kuaishou, a billion-user scale short video application, and improved effective view, like and follow by 1.28%, 8.22% and 13.6% respectively.Comment: Accepted by CIKM 2022, 10 page

    COLLECT: COLLaborativE ConText-aware service oriented architecture for intelligent decision-making in the Internet of Things

    Get PDF
    Internet of Things (IoT) has radically transformed the world; currently, every device can be connected to the Internet and provide valuable information for decision-making. In spite of the fast evolution of technologies accompanying the grow of IoT, we are still faced with the challenge of providing a service oriented architecture, which facilitates the inclusion of data coming together from several IoT devices, data delivery among a system’s agents, real-time data processing and service provision to users. Furthermore, context-aware data processing and architectures still pose a challenge, in spite of being key requirements in order to get stronger IoT architectures. To face this challenge, we propose a COLLaborative ConText Aware Service Oriented Architecture (COLLECT), which facilitates both the integration of IoT heterogeneous domain context data — through the use of a light message broker — and easy data delivery among several agents and collaborative participants in the system — making use of an enterprise service bus —. In addition, this architecture provides real-time data processing thanks to the use of a complex event processing engine as well as services and intelligent decision-making procedures to users according to the needs of the domain in question. As a result, COLLECT has a great impact on context-aware decentralized and collaborative reasoning for IoT, promoting context-aware intelligent decision making in such scope. Since context-awareness is key for a wide range of recommender and intelligent systems, the presented novel solution improves decision making in a large number of fields where such systems require to promptly process a variety of ubiquitous collaborative and context-aware data
    corecore