3,499 research outputs found

    Smart Meter Privacy: A Utility-Privacy Framework

    Full text link
    End-user privacy in smart meter measurements is a well-known challenge in the smart grid. The solutions offered thus far have been tied to specific technologies such as batteries or assumptions on data usage. Existing solutions have also not quantified the loss of benefit (utility) that results from any such privacy-preserving approach. Using tools from information theory, a new framework is presented that abstracts both the privacy and the utility requirements of smart meter data. This leads to a novel privacy-utility tradeoff problem with minimal assumptions that is tractable. Specifically for a stationary Gaussian Markov model of the electricity load, it is shown that the optimal utility-and-privacy preserving solution requires filtering out frequency components that are low in power, and this approach appears to encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm. 201

    Differentially Private State Estimation in Distribution Networks with Smart Meters

    Full text link
    State estimation is routinely being performed in high-voltage power transmission grids in order to assist in operation and to detect faulty equipment. In low- and medium-voltage power distribution grids, on the other hand, few real-time measurements are traditionally available, and operation is often conducted based on predicted and historical data. Today, in many parts of the world, smart meters have been deployed at many customers, and their measurements could in principle be shared with the operators in real time to enable improved state estimation. However, customers may feel reluctance in doing so due to privacy concerns. We therefore propose state estimation schemes for a distribution grid model, which ensure differential privacy to the customers. In particular, the state estimation schemes optimize different performance criteria, and a trade-off between a lower bound on the estimation performance versus the customers' differential privacy is derived. The proposed framework is general enough to be applicable also to other distribution networks, such as water and gas networks

    Privacy-Protecting Energy Management Unit through Model-Distribution Predictive Control

    Full text link
    The roll-out of smart meters in electricity networks introduces risks for consumer privacy due to increased measurement frequency and granularity. Through various Non-Intrusive Load Monitoring techniques, consumer behavior may be inferred from their metering data. In this paper, we propose an energy management method that reduces energy cost and protects privacy through the minimization of information leakage. The method is based on a Model Predictive Controller that utilizes energy storage and local generation, and that predicts the effects of its actions on the statistics of the actual energy consumption of a consumer and that seen by the grid. Computationally, the method requires solving a Mixed-Integer Quadratic Program of manageable size whenever new meter readings are available. We simulate the controller on generated residential load profiles with different privacy costs in a two-tier time-of-use energy pricing environment. Results show that information leakage is effectively reduced at the expense of increased energy cost. The results also show that with the proposed controller the consumer load profile seen by the grid resembles a mixture between that obtained with Non-Intrusive Load Leveling and Lazy Stepping.Comment: Accepted for publication in IEEE Transactions on Smart Grid 2017, special issue on Distributed Control and Efficient Optimization Methods for Smart Gri

    Differentially Private Convex Optimization with Piecewise Affine Objectives

    Full text link
    Differential privacy is a recently proposed notion of privacy that provides strong privacy guarantees without any assumptions on the adversary. The paper studies the problem of computing a differentially private solution to convex optimization problems whose objective function is piecewise affine. Such problem is motivated by applications in which the affine functions that define the objective function contain sensitive user information. We propose several privacy preserving mechanisms and provide analysis on the trade-offs between optimality and the level of privacy for these mechanisms. Numerical experiments are also presented to evaluate their performance in practice

    A privacy preserving approach to energy theft detection in smart grids

    Get PDF
    A major challenge for utilities is energy theft, wherein malicious actors steal energy for financial gain. One such form of theft in the smart grid is the fraudulent amplification of energy generation measurements from DERs, such as photo-voltaics. It is important to detect this form of malicious activity, but in a way that ensures the privacy of customers. Not considering privacy aspects could result in a backlash from customers and a heavily curtailed deployment of services, for example. In this short paper, we present a novel privacy-preserving approach to the detection of manipulated DER generation measurements

    Profiling Users in the Smart Grid

    Get PDF
    The implementation of the smart grid brings with it many new components that are fundamentally different to traditional power grid infrastructures. The most important addition brought by the smart grid is the application of the Advanced Metering Infrastructure (AMI). As part of the AMI, the smart meter device provides real time energy usage about the consumer to all of the smart grids stakeholders. Detailed statistics about a consumer’s energy usage can be accessed by the end user, utility companies and other parties. The problem, however, is in how to analyse, present and make best use of the data. This paper focuses on the data collected from the smart grid and how it can be used to detect abnormal user behaviour for energy monitoring applications. The proposed system employs a data classification technique to identify irregular energy usage in patterns generated by smart meters. The results show that it is possible to detect abnormal behaviour with an overall accuracy of 99.45% with 0.100 for sensitivity, 0.989 for specificity and an error of 0.006 using the LDC classifier
    • …
    corecore