178 research outputs found

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Lower Bounds for Oblivious Near-Neighbor Search

    Get PDF
    We prove an Ω(dlg⁥n/(lg⁥lg⁥n)2)\Omega(d \lg n/ (\lg\lg n)^2) lower bound on the dynamic cell-probe complexity of statistically oblivious\mathit{oblivious} approximate-near-neighbor search (ANN\mathsf{ANN}) over the dd-dimensional Hamming cube. For the natural setting of d=Θ(log⁥n)d = \Theta(\log n), our result implies an Ω~(lg⁥2n)\tilde{\Omega}(\lg^2 n) lower bound, which is a quadratic improvement over the highest (non-oblivious) cell-probe lower bound for ANN\mathsf{ANN}. This is the first super-logarithmic unconditional\mathit{unconditional} lower bound for ANN\mathsf{ANN} against general (non black-box) data structures. We also show that any oblivious static\mathit{static} data structure for decomposable search problems (like ANN\mathsf{ANN}) can be obliviously dynamized with O(log⁥n)O(\log n) overhead in update and query time, strengthening a classic result of Bentley and Saxe (Algorithmica, 1980).Comment: 28 page

    PrivGenDB: Efficient and privacy-preserving query executions over encrypted SNP-Phenotype database

    Full text link
    Searchable symmetric encryption (SSE) has been used to protect the confidentiality of genomic data while providing substring search and range queries on a sequence of genomic data, but it has not been studied for protecting single nucleotide polymorphism (SNP)-phenotype data. In this article, we propose a novel model, PrivGenDB, for securely storing and efficiently conducting different queries on genomic data outsourced to an honest-but-curious cloud server. To instantiate PrivGenDB, we use SSE to ensure confidentiality while conducting different types of queries on encrypted genomic data, phenotype and other information of individuals to help analysts/clinicians in their analysis/care. To the best of our knowledge, PrivGenDB construction is the first SSE-based approach ensuring the confidentiality of shared SNP-phenotype data through encryption while making the computation/query process efficient and scalable for biomedical research and care. Furthermore, it supports a variety of query types on genomic data, including count queries, Boolean queries, and k'-out-of-k match queries. Finally, the PrivGenDB model handles the dataset containing both genotype and phenotype, and it also supports storing and managing other metadata like gender and ethnicity privately. Computer evaluations on a dataset with 5,000 records and 1,000 SNPs demonstrate that a count/Boolean query and a k'-out-of-k match query over 40 SNPs take approximately 4.3s and 86.4{\mu}s, respectively, that outperforms the existing schemes

    Constructive Privacy for Shared Genetic Data

    Get PDF
    International audienceThe need for the sharing of genetic data, for instance, in genome-wide association studies is incessantly growing. In parallel, serious privacy concerns rise from a multi-party access to genetic information. Several techniques , such as encryption, have been proposed as solutions for the privacy-preserving sharing of genomes. However, existing programming means do not support guarantees for privacy properties and the performance optimization of genetic applications involving shared data. We propose two contributions in this context. First, we present new cloud-based architectures for cloud-based genetic applications that are motivated by the needs of geneticians. Second, we propose a model and implementation for the composition of watermarking with encryption, fragmentation, and client-side computations for the secure and privacy-preserving sharing of genetic data in the cloud
    • 

    corecore