452,953 research outputs found

    DIALOG-22 RuATD Generated Text Detection

    Full text link
    Text Generation Models (TGMs) succeed in creating text that matches human language style reasonably well. Detectors that can distinguish between TGM-generated text and human-written ones play an important role in preventing abuse of TGM. In this paper, we describe our pipeline for the two DIALOG-22 RuATD tasks: detecting generated text (binary task) and classification of which model was used to generate text (multiclass task). We achieved 1st place on the binary classification task with an accuracy score of 0.82995 on the private test set and 4th place on the multiclass classification task with an accuracy score of 0.62856 on the private test set. We proposed an ensemble method of different pre-trained models based on the attention mechanism.Comment: 6 page

    Adversarial Multi-task Learning for Text Classification

    Full text link
    Neural network models have shown their promising opportunities for multi-task learning, which focus on learning the shared layers to extract the common and task-invariant features. However, in most existing approaches, the extracted shared features are prone to be contaminated by task-specific features or the noise brought by other tasks. In this paper, we propose an adversarial multi-task learning framework, alleviating the shared and private latent feature spaces from interfering with each other. We conduct extensive experiments on 16 different text classification tasks, which demonstrates the benefits of our approach. Besides, we show that the shared knowledge learned by our proposed model can be regarded as off-the-shelf knowledge and easily transferred to new tasks. The datasets of all 16 tasks are publicly available at \url{http://nlp.fudan.edu.cn/data/}Comment: Accepted by ACL201

    CrypTen: Secure Multi-Party Computation Meets Machine Learning

    Full text link
    Secure multi-party computation (MPC) allows parties to perform computations on data while keeping that data private. This capability has great potential for machine-learning applications: it facilitates training of machine-learning models on private data sets owned by different parties, evaluation of one party's private model using another party's private data, etc. Although a range of studies implement machine-learning models via secure MPC, such implementations are not yet mainstream. Adoption of secure MPC is hampered by the absence of flexible software frameworks that "speak the language" of machine-learning researchers and engineers. To foster adoption of secure MPC in machine learning, we present CrypTen: a software framework that exposes popular secure MPC primitives via abstractions that are common in modern machine-learning frameworks, such as tensor computations, automatic differentiation, and modular neural networks. This paper describes the design of CrypTen and measure its performance on state-of-the-art models for text classification, speech recognition, and image classification. Our benchmarks show that CrypTen's GPU support and high-performance communication between (an arbitrary number of) parties allows it to perform efficient private evaluation of modern machine-learning models under a semi-honest threat model. For example, two parties using CrypTen can securely predict phonemes in speech recordings using Wav2Letter faster than real-time. We hope that CrypTen will spur adoption of secure MPC in the machine-learning community
    • …
    corecore