77 research outputs found

    Private Outsourced Kriging Interpolation

    Get PDF

    Cryptographic Techniques for Securing Data in the Cloud

    Get PDF
    El paradigma de la computació al núvol proporciona accés remot a potents infraestructures a cost reduït. Tot i que l’adopció del núvol ofereix nombrosos beneficis, la migració de dades sol requerir un alt nivell de confiança en el proveïdor de serveis i introdueix problemes de privacitat. En aquesta tesi es dissenyen tècniques per a permetre a usuaris del núvol protegir un conjunt de dades externalitzades. Les solucions proposades emanen del projecte H2020 de la Comissió Europea “CLARUS: User-Centered Privacy and Security in the Cloud”. Els problemes explorats són la cerca sobre dades xifrades, la delegació de càlculs d’interpolació, els esquemes de compartició de secrets i la partició de dades. Primerament, s’estudia el problema de la cerca sobre dades xifrades mitjançant els esquemes de xifrat cercable simètric (SSE), i es desenvolupen tècniques que permeten consultes per rangs dos-dimensionals a SSE. També es tracta el mateix problema utilitzant esquemes de xifrat cercable de clau pública (PEKS), i es presenten esquemes PEKS que permeten consultes conjuntives i de subconjunt. En aquesta tesi també s’aborda la delegació privada de computacions Kriging. Kriging és un algoritme d’interpolació espaial dissenyat per a aplicacions geo-estadístiques. Es descriu un mètode per a delegar interpolacions Kriging de forma privada utilitzant xifrat homomòrfic. Els esquemes de compartició de secrets són una primitiva fonamental en criptografia, utilitzada a diverses solucions orientades al núvol. Una de les mesures d’eficiència relacionades més importants és la taxa d’informació òptima. Atès que calcular aquesta taxa és generalment difícil, s’obtenen propietats que faciliten la seva descripció. Finalment, es tracta el camp de la partició de dades per a la protecció de la privacitat. Aquesta tècnica protegeix la privacitat de les dades emmagatzemant diversos fragments a diferents ubicacions. Aquí s’analitza aquest problema des d’un punt de vista combinatori, fitant el nombre de fragments i proposant diversos algoritmes.El paradigma de la computación en la nube proporciona acceso remoto a potentes infraestructuras a coste reducido. Aunque la adopción de la nube ofrece numerosos beneficios, la migración de datos suele requerir un alto nivel de confianza en el proveedor de servicios e introduce problemas de privacidad. En esta tesis se diseñan técnicas para permitir a usuarios de la nube proteger un conjunto de datos externalizados. Las soluciones propuestas emanan del proyecto H2020 de la Comisión Europea “CLARUS: User-Centered Privacy and Security in the Cloud”. Los problemas explorados son la búsqueda sobre datos cifrados, la delegación de cálculos de interpolación, los esquemas de compartición de secretos y la partición de datos. Primeramente, se estudia el problema de la búsqueda sobre datos cifrados mediante los esquemas de cifrado simétrico buscable (SSE), y se desarrollan técnicas para permitir consultas por rangos dos-dimensionales en SSE. También se trata el mismo problema utilizando esquemas de cifrado buscable de llave pública (PEKS), y se presentan esquemas que permiten consultas conyuntivas y de subconjunto. Adicionalmente, se aborda la delegación privada de computaciones Kriging. Kriging es un algoritmo de interpolación espacial diseñado para aplicaciones geo-estadísticas. Se describe un método para delegar interpolaciones Kriging privadamente utilizando técnicas de cifrado homomórfico. Los esquemas de compartición de secretos son una primitiva fundamental en criptografía, utilizada en varias soluciones orientadas a la nube. Una de las medidas de eficiencia más importantes es la tasa de información óptima. Dado que calcular esta tasa es generalmente difícil, se obtienen propiedades que facilitan su descripción. Por último, se trata el campo de la partición de datos para la protección de la privacidad. Esta técnica protege la privacidad de los datos almacenando varios fragmentos en distintas ubicaciones. Analizamos este problema desde un punto de vista combinatorio, acotando el número de fragmentos y proponiendo varios algoritmos.The cloud computing paradigm provides users with remote access to scalable and powerful infrastructures at a very low cost. While the adoption of cloud computing yields a wide array of benefits, the act of migrating to the cloud usually requires a high level of trust in the cloud service provider and introduces several security and privacy concerns. This thesis aims at designing user-centered techniques to secure an outsourced data set in cloud computing. The proposed solutions stem from the European Commission H2020 project “CLARUS: User-Centered Privacy and Security in the Cloud”. The explored problems are searching over encrypted data, outsourcing Kriging interpolation computations, secret sharing and data splitting. Firstly, the problem of searching over encrypted data is studied using symmetric searchable encryption (SSE) schemes, and techniques are developed to enable efficient two-dimensional range queries in SSE. This problem is also studied through public key encryption with keyword search (PEKS) schemes, efficient PEKS schemes achieving conjunctive and subset queries are proposed. This thesis also aims at securely outsourcing Kriging computations. Kriging is a spatial interpolation algorithm designed for geo-statistical applications. A method to privately outsource Kriging interpolation is presented, based in homomorphic encryption. Secret sharing is a fundamental primitive in cryptography, used in many cloud-oriented techniques. One of the most important efficiency measures in secret sharing is the optimal information ratio. Since computing the optimal information ratio of an access structure is generally hard, properties are obtained to facilitate its description. Finally, this thesis tackles the privacy-preserving data splitting technique, which aims at protecting data privacy by storing different fragments of data at different locations. Here, the data splitting problem is analyzed from a combinatorial point of view, bounding the number of fragments and proposing various algorithms to split the data

    SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python

    Get PDF
    Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author\u27s programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases. With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details

    Road distance and travel time for spatial urban modelling

    Get PDF
    Interactions within and between urban environments include the price of houses, the flow of traffic and the intensity of noise pollution, which can all be restricted by various physical, regulatory and customary barriers. Examples of such restrictions include buildings, one-way systems and pedestrian crossings. These constrictive features create challenges for predictive modelling in urban space, which are not fully captured when proximity-based models rely on the typically used Euclidean (straight line) distance metric. Over the course of this thesis, I ask three key questions in an attempt to identify how to improve spatial models in restricted urban areas. These are: (1) which distance function best models real world spatial interactions in an urban setting? (2) when, if ever, are non-Euclidean distance functions valid for urban spatial models? and (3) what is the best way to estimate the generalisation performance of urban models utilising spatial data? This thesis answers each of these questions through three contributions supporting the interdisciplinary domain of Urban Sciences. These contributions are: (1) the provision of an improved approximation of road distance and travel time networks to model urban spatial interactions; (2) the approximation of valid distance metrics from non-Euclidean inputs for improved spatial predictions and (3) the presentation of a road distance and travel time cross-validation metric to improve the estimation of urban model generalisation. Each of these contributions provide improvements against the current state-of-the-art. Throughout, all experiments utilise real world datasets in England and Wales, such datasets contain information on restricted roads, travel times, house sales and traffic counts. With these datasets, I display a number of case studies which show up to a 32% improved model accuracy against Euclidean distances and in some cases, a 90% improvement for the estimation of model generalisation performance. Combined, the contributions improve the way that proximity-based urban models perform and also provides a more accurate estimate of generalisation performance for predictive models in urban space. The main implication of these contributions to Urban Science is the ability to better model the challenges within a city based on how they interact with themselves and each other using an improved function of urban mobility, compared with the current state-of-the-art. Such challenges may include selecting the optimal locations for emergency services, identifying the causes of traffic incidents or estimating the density of air pollution. Additionally, the key implication of this research on geostatistics is that it provides the motivation and means of undertaking non-Euclidean based research for non-urban applications, for example predicting with alternative, non-road based, mobility patterns such as migrating animals, rivers and coast lines. Finally, the implication of my research to the real estate industry is significant, in which one can now improve the accuracy of the industry's state-of-the-art nationwide house price predictor, whilst also being able to more appropriately present their accuracy estimates for robustness

    Noise mapping based on participative measurements

    No full text
    The high temporal and spatial granularities recommended by the European regulation for the purpose of environmental noise mapping leads to consider new alternatives to simulations for reaching such information. While more and more European cities deploy urban environmental observatories, the ceaseless rising number of citizens equipped with both a geographical positioning system and environmental sensors through their smartphones legitimates the design of outsourced systems that promote citizen participatory sensing. In this context, the OnoM@p system aims at offering a framework for capitalizing on crowd noise data recorded by inexperienced individuals by means of an especially designed mobile phone application. The system fully rests upon open source tools and interoperability standards defined by the Open Geospatial Consortium. Moreover, the implementation of the Spatial Data Infrastructure principle enables to break up as services the various business modules for acquiring, analysing and mapping sound levels. The proposed architecture rests on outsourced processes able to filter outlier sensors and untrustworthy data, to cross- reference geolocalised noise measurements with both geographical and statistical data in order to provide higher level indicators, and to map the collected and processed data based on web services

    Assessing contaminated land cleanup costs and strategies

    Get PDF
    The remediation of contaminated sites is often subject to substantial cost overruns. This persistent discrepancy between estimated and realized costs is chiefly responsible for misguided land use and wasteful delays in the reconversion of former industrial sites. In order to deal with incomplete information and uncertainty in this context, this paper draws on stochastic modeling and mathematical finance methods. We show that relatively simple and usable formulas can then be derived for better assessing cleanup strategies. These formulas apply to generic remediation technologies and scenarios. They are robust to misspecification of key parameters (like the effectiveness of a prescribed treatment). They also yield practical rules for decision making and budget provisioning

    Depletion of groundwater resources under rapid urbanisation in Africa : recent and future trends in the Nairobi Aquifer System, Kenya

    Get PDF
    Open Access via the Springer Compact Agreement Acknowledgements: We acknowledge the Royal Geographical Society (with IBG) Environment and Sustainability Research Grant for supporting the fieldwork activities, and The World Bank/Aurecon AMEI Limited for supporting model scenarios simulations. We are also grateful to the Kenyan Water Resources Authority (WRA) and the University of Aberdeen for jointly supporting Samson Oiro’s PhD scholarship. We warmly thank WRA staff involved in data compilation and acquisition as well as the WRA offices (Nairobi and Kiambu Office) for providing the borehole completion reports and abstraction records. We thank three reviewers for their constructive comments which contributed to improve the final manuscript.Peer reviewedPublisher PD

    Enabling the Development and Implementation of Digital Twins : Proceedings of the 20th International Conference on Construction Applications of Virtual Reality

    Get PDF
    Welcome to the 20th International Conference on Construction Applications of Virtual Reality (CONVR 2020). This year we are meeting on-line due to the current Coronavirus pandemic. The overarching theme for CONVR2020 is "Enabling the development and implementation of Digital Twins". CONVR is one of the world-leading conferences in the areas of virtual reality, augmented reality and building information modelling. Each year, more than 100 participants from all around the globe meet to discuss and exchange the latest developments and applications of virtual technologies in the architectural, engineering, construction and operation industry (AECO). The conference is also known for having a unique blend of participants from both academia and industry. This year, with all the difficulties of replicating a real face to face meetings, we are carefully planning the conference to ensure that all participants have a perfect experience. We have a group of leading keynote speakers from industry and academia who are covering up to date hot topics and are enthusiastic and keen to share their knowledge with you. CONVR participants are very loyal to the conference and have attended most of the editions over the last eighteen editions. This year we are welcoming numerous first timers and we aim to help them make the most of the conference by introducing them to other participants
    corecore