16,931 research outputs found

    An MDS-PIR Capacity-Achieving Protocol for Distributed Storage Using Non-MDS Linear Codes

    Get PDF
    We propose a private information retrieval (PIR) protocol for distributed storage systems with noncolluding nodes where data is stored using an arbitrary linear code. An expression for the PIR rate, i.e., the ratio of the amount of retrieved data per unit of downloaded data, is derived, and a necessary and a sufficient condition for codes to achieve the maximum distance separable (MDS) PIR capacity are given. The necessary condition is based on the generalized Hamming weights of the storage code, while the sufficient condition is based on code automorphisms. We show that cyclic codes and Reed-Muller codes satisfy the sufficient condition and are thus MDS-PIR capacity-achieving.Comment: To be presented at 2018 IEEE International Symposium on Information Theory (ISIT). arXiv admin note: substantial text overlap with arXiv:1712.0389

    Private Information Retrieval Schemes for Coded Data with Arbitrary Collusion Patterns

    Full text link
    In Private Information Retrieval (PIR), one wants to download a file from a database without revealing to the database which file is being downloaded. Much attention has been paid to the case of the database being encoded across several servers, subsets of which can collude to attempt to deduce the requested file. With the goal of studying the achievable PIR rates in realistic scenarios, we generalize results for coded data from the case of all subsets of servers of size tt colluding, to arbitrary subsets of the servers. We investigate the effectiveness of previous strategies in this new scenario, and present new results in the case where the servers are partitioned into disjoint colluding groups.Comment: Updated with a corrected statement of Theorem

    Asymmetry Helps: Improved Private Information Retrieval Protocols for Distributed Storage

    Get PDF
    We consider private information retrieval (PIR) for distributed storage systems (DSSs) with noncolluding nodes where data is stored using a non maximum distance separable (MDS) linear code. It was recently shown that if data is stored using a particular class of non-MDS linear codes, the MDS-PIR capacity, i.e., the maximum possible PIR rate for MDS-coded DSSs, can be achieved. For this class of codes, we prove that the PIR capacity is indeed equal to the MDS-PIR capacity, giving the first family of non-MDS codes for which the PIR capacity is known. For other codes, we provide asymmetric PIR protocols that achieve a strictly larger PIR rate compared to existing symmetric PIR protocols.Comment: To be presented at 2018 IEEE Information Theory Workshop (ITW'18). See arXiv:1808.09018 for its extended versio

    Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes

    Get PDF
    We propose three private information retrieval (PIR) protocols for distributed storage systems (DSSs) where data is stored using an arbitrary linear code. The first two protocols, named Protocol 1 and Protocol 2, achieve privacy for the scenario with noncolluding nodes. Protocol 1 requires a file size that is exponential in the number of files in the system, while Protocol 2 requires a file size that is independent of the number of files and is hence simpler. We prove that, for certain linear codes, Protocol 1 achieves the maximum distance separable (MDS) PIR capacity, i.e., the maximum PIR rate (the ratio of the amount of retrieved stored data per unit of downloaded data) for a DSS that uses an MDS code to store any given (finite and infinite) number of files, and Protocol 2 achieves the asymptotic MDS-PIR capacity (with infinitely large number of files in the DSS). In particular, we provide a necessary and a sufficient condition for a code to achieve the MDS-PIR capacity with Protocols 1 and 2 and prove that cyclic codes, Reed-Muller (RM) codes, and a class of distance-optimal local reconstruction codes achieve both the finite MDS-PIR capacity (i.e., with any given number of files) and the asymptotic MDS-PIR capacity with Protocols 1 and 2, respectively. Furthermore, we present a third protocol, Protocol 3, for the scenario with multiple colluding nodes, which can be seen as an improvement of a protocol recently introduced by Freij-Hollanti et al.. Similar to the noncolluding case, we provide a necessary and a sufficient condition to achieve the maximum possible PIR rate of Protocol 3. Moreover, we provide a particular class of codes that is suitable for this protocol and show that RM codes achieve the maximum possible PIR rate for the protocol. For all three protocols, we present an algorithm to optimize their PIR rates.Comment: This work is the extension of the work done in arXiv:1612.07084v2. The current version introduces further refinement to the manuscript. Current version will appear in the IEEE Transactions on Information Theor

    Local Reconstruction Codes: A Class of MDS-PIR Capacity-Achieving Codes

    Get PDF
    We prove that a class of distance-optimal local reconstruction codes (LRCs), an important family of repair-efficient codes for distributed storage systems, achieve the maximum distance separable private information retrieval capacity for the case of noncolluding nodes. This particular class of codes includes Pyramid codes and other LRCs proposed in the literature.Comment: The contents of this manuscript is extracted from arXiv:1712.03898, and will be presented at the IEEE Information Theory Workshop (ITW), 201
    • …
    corecore