22 research outputs found

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    Revealing the landscape of privacy-enhancing technologies in the context of data markets for the IoT: A systematic literature review

    Get PDF
    IoT data markets in public and private institutions have become increasingly relevant in recent years because of their potential to improve data availability and unlock new business models. However, exchanging data in markets bears considerable challenges related to disclosing sensitive information. Despite considerable research focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions, analyze and scope the technologies that have been suggested in this context, and structure the remaining challenges to determine areas where future research is required. To accomplish this goal, we conducted a systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results indicate that most research in this area has emerged only recently, and no IoT data market architecture has established itself as canonical. Existing solutions frequently lack the required combination of anonymization and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market architectures. We also identified significant challenges remaining, such as the copy problem and the recursive enforcement problem that - while solutions have been suggested to some extent - are often not sufficiently addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and users' privacy and businesses-critical information are protected

    Revealing the Landscape of Privacy-Enhancing Technologies in the Context of Data Markets for the IoT: A Systematic Literature Review

    Get PDF
    IoT data markets in public and private institutions have become increasingly relevant in recent years because of their potential to improve data availability and unlock new business models. However, exchanging data in markets bears considerable challenges related to disclosing sensitive information. Despite considerable research focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions, analyze and scope the technologies that have been suggested in this context, and structure the remaining challenges to determine areas where future research is required. To accomplish this goal, we conducted a systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results indicate that most research in this area has emerged only recently, and no IoT data market architecture has established itself as canonical. Existing solutions frequently lack the required combination of anonymization and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market architectures. We also identified significant challenges remaining, such as the copy problem and the recursive enforcement problem that-while solutions have been suggested to some extent-are often not sufficiently addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and users' privacy and businesses-critical information are protected.Comment: 49 pages, 17 figures, 11 table

    Effective Privacy-Preserving Mechanisms for Vehicle-to-Everything Services

    Get PDF
    Owing to the advancement of wireless communication technologies, drivers can rely on smart connected vehicles to communicate with each other, roadside units, pedestrians, and remote service providers to enjoy a large amount of vehicle-to-everything (V2X) services, including navigation, parking, ride hailing, and car sharing. These V2X services provide different functions for bettering travel experiences, which have a bunch of benefits. In the real world, even without smart connected vehicles, drivers as users can utilize their smartphones and mobile applications to access V2X services and connect their smartphones to vehicles through some interfaces, e.g., IOS Carplay and Android Auto. In this way, they can still enjoy V2X services through modern car infotainment systems installed on vehicles. Most of the V2X services are data-centric and data-intensive, i.e., users have to upload personal data to a remote service provider, and the service provider can continuously collect a user's data and offer personalized services. However, the data acquired from users may include users' sensitive information, which may expose user privacy and cause serious consequences. To protect user privacy, a basic privacy-preserving mechanism, i.e, anonymization, can be applied in V2X services. Nevertheless, a big obstacle arises as well: user anonymization may affect V2X services' availability. As users become anonymous, users may behave selfishly and maliciously to break the functions of a V2X service without being detected and the service may become unavailable. In short, there exist a conflict between privacy and availability, which is caused by different requirements of users and service providers. In this thesis, we have identified three major conflicts between privacy and availability for V2X services: privacy vs. linkability, privacy vs. accountability, privacy vs. reliability, and then have proposed and designed three privacy-preserving mechanisms to resolve these conflicts. Firstly, the thesis investigates the conflict between privacy and linkability in an automated valet parking (AVP) service, where users can reserve a parking slot for their vehicles such that vehicles can achieve automated valet parking. As an optional privacy-preserving measure, users can choose to anonymize their identities when booking a parking slot for their vehicles. In this way, although user privacy is protected by anonymization, malicious users can repeatedly send parking reservation requests to a parking service provider to make the system unavailable (i.e., "Double-Reservation Attack"). Aiming at this conflict, a security model is given in the thesis to clearly define necessary privacy requirements and potential attacks in an AVP system, and then a privacy-preserving reservation scheme has been proposed based on BBS+ signature and zero-knowledge proof. In the proposed scheme, users can keep anonymous since users only utilize a one-time unlinkable token generated from his/her anonymous credential to achieve parking reservations. In the meantime, by utilizing proxy re-signature, the scheme can also guarantee that one user can only have one token at a time to resist against "Double-Reservation Attack". Secondly, the thesis investigates the conflict between privacy and accountability in a car sharing service, where users can conveniently rent a shared car without human intervention. One basic demand for car sharing service is to check the user's identity to determine his/her validity and enable the user to be accountable if he/she did improper behavior. If the service provider allows users to hide their identities and achieve anonymization to protect user privacy, naturally the car sharing service is unavailable. Aiming at this conflict, a decentralized, privacy-preserving, and accountable car sharing architecture has been proposed in the thesis, where multiple dynamic validation servers are employed to build decentralized trust for users. Under this architecture, the thesis proposes a privacy-preserving identity management scheme to assist in managing users' identities in a dynamic manner based on a verifiable secret sharing/redistribution technique, i.e. the validation servers who manage users' identities are dynamically changed with the time advancing. Moreover, the scheme enables a majority of dynamic validation servers to recover the misbehaving users' identities and guarantees that honest users' identities are confidential to achieve privacy preservation and accountability at the same time. Thirdly, the thesis investigates the conflict between privacy and reliability in a road condition monitoring service, where users can report road conditions to a monitoring service provider to help construct a live map based on crowdsourcing. Usually, a reputation-based mechanism is applied in the service to measure a user's reliability. However, this mechanism cannot be easily integrated with a privacy-preserving mechanism based on user anonymization. When users are anonymous, they can upload arbitrary reports to destroy the service quality and make the service unavailable. Aiming at this conflict, a privacy-preserving crowdsourcing-based road condition monitoring scheme has been proposed in the thesis. By leveraging homomorphic commitments and PS signature, the scheme supports anonymous user reputation management without the assistance of any third-party authority. Furthermore, the thesis proposes several zero-knowledge proof protocols to ensure that a user can keep anonymous and unlinkable but a monitoring service provider can still judge the reliability of this user's report through his/her reputation score. To sum up, with more attention being paid to privacy issues, how to protect user privacy for V2X services becomes more significant. The thesis proposes three effective privacy-preserving mechanisms for V2X services, which resolve the conflict between privacy and availability and can be conveniently integrated into current V2X applications since no trusted third party authority is required. The proposed approaches should be valuable for achieving practical privacy preservation in V2X services

    Security and Privacy Preservation in Mobile Advertising

    Get PDF
    Mobile advertising is emerging as a promising advertising strategy, which leverages prescriptive analytics, location-based distribution, and feedback-driven marketing to engage consumers with timely and targeted advertisements. In the current mobile advertising system, a third-party ad broker collects and manages advertisements for merchants who would like to promote their business to mobile users. Based on its large-scale database of user profiles, the ad broker can help the merchants to better reach out to customers with related interests and charges the merchants for ad dissemination services. Recently, mobile advertising technology has dominated the digital advertising industry and has become the main source of income for IT giants. However, there are many security and privacy challenges that may hinder the continuous success of the mobile advertising industry. First, there is a lack of advertising transparency in the current mobile advertising system. For example, mobile users are concerned about the reliability and trustworthiness of the ad dissemination process and advertising review system. Without proper countermeasures, mobile users can install ad-blocking software to filter out irrelevant or even misleading advertisements, which may lower the advertising investments from merchants. Second, as more strict privacy regulations (e.g. European General Data Privacy Regulations) take effect, it is critical to protect mobile users’ personal profiles from illegal sharing and exposure in the mobile advertising system. In this thesis, three security and privacy challenges for the mobile advertising system are identified and addressed with the designs, implementations, and evaluations of a blockchain-based architecture. First, we study the anonymous review system for the mobile advertising industry. When receiving advertisements from a specific merchant (e.g. a nearby restaurant), mobile users are more likely to browse the previous reviews about the merchant for quality-of-service assessments. However, current review systems are known for the lack of system transparency and are subject to many attacks, such as double reviews and deletions of negative reviews. We exploit the tamper-proof nature and the distributed consensus mechanism of the blockchain technology, to design a blockchain-based review system for mobile advertising, where review accumulations are transparent and verifiable to the public. To preserve user review privacy, we further design an anonymous review token generation scheme, where users are encouraged to leave reviews anonymously while still ensuring the review authenticity. We also explore the implementation challenges of the blockchain-based system on an Ethereum testing network and the experimental results demonstrate the application feasibility of the proposed anonymous review system. Second, we investigate the transparency issues for the targeted ad dissemination process. Specifically, we focus on a specific mobile advertising application: vehicular local advertising, where vehicular users send spatial-keyword queries to ad brokers to receive location-aware advertisements. To build a transparent advertising system, the ad brokers are required to provide mobile users with explanations on the ad dissemination process, e.g., why a specific ad is disseminated to a mobile user. However, such transparency explanations are often found incomplete and sometimes even misleading, which may lower the user trust on the advertising system if without proper countermeasures. Therefore, we design an advertising smart contract to efficiently realize a publicly verifiable spatial-keyword query scheme. Instead of directly implementing the spatial-keyword query scheme on the smart contract with prohibitive storage and computation cost, we exploit the on/off-chain computation models to trade the expensive on-chain cost for cheap off-chain cost. With two design strategies: digest-and-verify and divide-then-assemble, the on-chain cost for a single spatial keyword query is reduced to constant regardless of the scale of the spatial-keyword database. Extensive experiments are conducted to provide both on-chain and off-chain benchmarks with a verifiable computation framework. Third, we explore another critical requirement of the mobile advertising system: public accountability enforcement against advertising misconducts, if (1) mobile users receive irrelevant ads, or (2) advertising policies of merchants are not correctly computed in the ad dissemination process. This requires the design of a composite Succinct Non-interactive ARGument (SNARG) system, that can be tailored for different advertising transparency requirements and is efficient for the blockchain implementations. Moreover, pursuing public accountability should also achieve a strict privacy guarantee for the user profile. We also propose an accountability contract which can receive explanation requirements from both mobile users and merchants. To promote prompt on-chain responses, we design an incentive mechanism based on the pre-deposits of involved parties, i.e., ad brokers, mobile users, and merchants. If any advertising misconduct is identified, public accountability can be enforced by confiscating the pre-deposits of the misbehaving party. Comprehensive experiments and analyses are conducted to demonstrate the versatile functionalities and feasibility of the accountability contract. In summary, we have designed, implemented, and evaluated a blockchain-based architecture for security and privacy preservations in the mobile advertising. The designed architecture can not only enhance the transparency and accountability for the mobile advertising system, but has also achieved notably on-chain efficiency and privacy for real-world implementations. The results from the thesis may shed light on the future research and practice of a blockchain-based architecture for the privacy regulation compliance in the mobile advertising

    Game Theory Based Privacy Protection for Context-Aware Services

    Get PDF
    In the era of context-aware services, users are enjoying remarkable services based on data collected from a multitude of users. To receive services, they are at risk of leaking private information from adversaries possibly eavesdropping on the data and/or the un--trusted service platform selling off its data. Malicious adversaries may use leaked information to violate users\u27 privacy in unpredictable ways. To protect users\u27 privacy, many algorithms are proposed to protect users\u27 sensitive information by adding noise, thus causing context-aware service quality loss. Game theory has been utilized as a powerful tool to balance the tradeoff between privacy protection level and service quality. However, most of the existing schemes fail to depict the mutual relationship between any two parties involved: user, platform, and adversary. There is also an oversight to formulate the interaction occurring between multiple users, as well as the interaction between any two attributes. To solve these issues, this dissertation firstly proposes a three-party game framework to formulate the mutual interaction between three parties and study the optimal privacy protection level for context-aware services, thus optimize the service quality. Next, this dissertation extends the framework to a multi-user scenario and proposes a two-layer three-party game framework. This makes the proposed framework more realistic by further exploring the interaction, not only between different parties, but also between users. Finally, we focus on analyzing the impact of long-term time-serial data and the active actions of the platform and adversary. To achieve this objective, we design a three-party Stackelberg game model to help the user to decide whether to update information and the granularity of updated information

    Edge Learning for 6G-enabled Internet of Things: A Comprehensive Survey of Vulnerabilities, Datasets, and Defenses

    Full text link
    The ongoing deployment of the fifth generation (5G) wireless networks constantly reveals limitations concerning its original concept as a key driver of Internet of Everything (IoE) applications. These 5G challenges are behind worldwide efforts to enable future networks, such as sixth generation (6G) networks, to efficiently support sophisticated applications ranging from autonomous driving capabilities to the Metaverse. Edge learning is a new and powerful approach to training models across distributed clients while protecting the privacy of their data. This approach is expected to be embedded within future network infrastructures, including 6G, to solve challenging problems such as resource management and behavior prediction. This survey article provides a holistic review of the most recent research focused on edge learning vulnerabilities and defenses for 6G-enabled IoT. We summarize the existing surveys on machine learning for 6G IoT security and machine learning-associated threats in three different learning modes: centralized, federated, and distributed. Then, we provide an overview of enabling emerging technologies for 6G IoT intelligence. Moreover, we provide a holistic survey of existing research on attacks against machine learning and classify threat models into eight categories, including backdoor attacks, adversarial examples, combined attacks, poisoning attacks, Sybil attacks, byzantine attacks, inference attacks, and dropping attacks. In addition, we provide a comprehensive and detailed taxonomy and a side-by-side comparison of the state-of-the-art defense methods against edge learning vulnerabilities. Finally, as new attacks and defense technologies are realized, new research and future overall prospects for 6G-enabled IoT are discussed
    corecore