1,077 research outputs found

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    On the Security of the Automatic Dependent Surveillance-Broadcast Protocol

    Full text link
    Automatic dependent surveillance-broadcast (ADS-B) is the communications protocol currently being rolled out as part of next generation air transportation systems. As the heart of modern air traffic control, it will play an essential role in the protection of two billion passengers per year, besides being crucial to many other interest groups in aviation. The inherent lack of security measures in the ADS-B protocol has long been a topic in both the aviation circles and in the academic community. Due to recently published proof-of-concept attacks, the topic is becoming ever more pressing, especially with the deadline for mandatory implementation in most airspaces fast approaching. This survey first summarizes the attacks and problems that have been reported in relation to ADS-B security. Thereafter, it surveys both the theoretical and practical efforts which have been previously conducted concerning these issues, including possible countermeasures. In addition, the survey seeks to go beyond the current state of the art and gives a detailed assessment of security measures which have been developed more generally for related wireless networks such as sensor networks and vehicular ad hoc networks, including a taxonomy of all considered approaches.Comment: Survey, 22 Pages, 21 Figure

    Vehicular Networks and Outdoor Pedestrian Localization

    Get PDF
    This thesis focuses on vehicular networks and outdoor pedestrian localization. In particular, it targets secure positioning in vehicular networks and pedestrian localization for safety services in outdoor environments. The former research topic must cope with three major challenges, concerning users’ privacy, computational costs of security and the system trust on user correctness. This thesis addresses those issues by proposing a new lightweight privacy-preserving framework for continuous tracking of vehicles. The proposed solution is evaluated in both dense and sparse vehicular settings through simulation and experiments in real-world testbeds. In addition, this thesis explores the benefit given by the use of low frequency bands for the transmission of control messages in vehicular networks. The latter topic is motivated by a significant number of traffic accidents with pedestrians distracted by their smartphones. This thesis proposes two different localization solutions specifically for pedestrian safety: a GPS-based approach and a shoe-mounted inertial sensor method. The GPS-based solution is more suitable for rural and suburban areas while it is not applicable in dense urban environments, due to large positioning errors. Instead the inertial sensor approach overcomes the limitations of previous technique in urban environments. Indeed, by exploiting accelerometer data, this architecture is able to precisely detect the transitions from safe to potentially unsafe walking locations without the need of any absolute positioning systems
    • …
    corecore