1,536 research outputs found

    Privacy-Preserving Face Recognition with Outsourced Computation

    Get PDF
    Face recognition is one of the most important biometrics pattern recognitions, which has been widely applied in a variety of enterprise, civilian and law enforcement. The privacy of biometrics data raises important concerns, in particular if computations over biometric data is performed at untrusted servers. In previous work of privacy-preserving face recognition, in order to protect individuals\u27 privacy, face recognition is performed over encrypted face images. However, these results increase the computation cost of the client and the face database owners, which may enable face recognition cannot be efficiently executed. Consequently, it would be desirable to reduce computation over sensitive biometric data in such environments. Currently, no secure techniques for outsourcing face biometric recognition is readily available. In this paper, we propose a privacy-preserving face recognition protocol with outsourced computation for the first time, which efficiently protects individuals\u27 privacy. Our protocol substantially improves the previous works in terms of the online computation cost by outsourcing large computation task to a cloud server who has large computing power. In particular, the overall online computation cost of the client and the database owner in our protocol is at most 1/2 of the corresponding protocol in the state of the art algorithms. In addition, the client requires the decryption operations with only O(1)O(1) independent of MM, where MM is the size of the face database. Furthermore, the client can verify the correction of the recognition result

    Exploring Privacy Preservation in Outsourced K-Nearest Neighbors with Multiple Data Owners

    Full text link
    The k-nearest neighbors (k-NN) algorithm is a popular and effective classification algorithm. Due to its large storage and computational requirements, it is suitable for cloud outsourcing. However, k-NN is often run on sensitive data such as medical records, user images, or personal information. It is important to protect the privacy of data in an outsourced k-NN system. Prior works have all assumed the data owners (who submit data to the outsourced k-NN system) are a single trusted party. However, we observe that in many practical scenarios, there may be multiple mutually distrusting data owners. In this work, we present the first framing and exploration of privacy preservation in an outsourced k-NN system with multiple data owners. We consider the various threat models introduced by this modification. We discover that under a particularly practical threat model that covers numerous scenarios, there exists a set of adaptive attacks that breach the data privacy of any exact k-NN system. The vulnerability is a result of the mathematical properties of k-NN and its output. Thus, we propose a privacy-preserving alternative system supporting kernel density estimation using a Gaussian kernel, a classification algorithm from the same family as k-NN. In many applications, this similar algorithm serves as a good substitute for k-NN. We additionally investigate solutions for other threat models, often through extensions on prior single data owner systems

    Privacy-Preserving Outsourced Media Search

    Get PDF
    International audienceThis work proposes a privacy-protection framework for an important application called outsourced media search. This scenario involves a data owner, a client, and an untrusted server, where the owner outsources a search service to the server. Due to lack of trust, the privacy of the client and the owner should be protected. The framework relies on multimedia hashing and symmetric encryption. It requires involved parties to participate in a privacy-enhancing protocol. Additional processing steps are carried out by the owner and the client: (i) before outsourcing low-level media features to the server, the owner has to one-way hash them, and partially encrypt each hash-value; (ii) the client completes the similarity search by re-ranking the most similar candidates received from the server. One-way hashing and encryption add ambiguity to data and make it difficult for the server to infer contents from database items and queries, so the privacy of both the owner and the client is enforced. The proposed framework realizes trade-offs among strength of privacy enforcement, quality of search, and complexity, because the information loss can be tuned during hashing and encryption. Extensive experiments demonstrate the effectiveness and the flexibility of the framework

    Efficient Verifiable Computation of XOR for Biometric Authentication

    Full text link
    This work addresses the security and privacy issues in remotebiometric authentication by proposing an efficient mechanism to verifythe correctness of the outsourced computation in such protocols.In particular, we propose an efficient verifiable computation of XORingencrypted messages using an XOR linear message authenticationcode (MAC) and we employ the proposed scheme to build a biometricauthentication protocol. The proposed authentication protocol is bothsecure and privacy-preserving against malicious (as opposed to honest-but-curious) adversaries. Specifically, the use of the verifiable computation scheme together with an homomorphic encryption protects the privacy of biometric templates against malicious adversaries. Furthermore, in order to achieve unlinkability of authentication attempts, while keeping a low communication overhead, we show how to apply Oblivious RAM and biohashing to our protocol. We also provide a proof of security for the proposed solution. Our simulation results show that the proposed authentication protocol is efficient
    • …
    corecore