16 research outputs found

    Data interoperability and privacy schemes in healthcare data using Blockchain technology

    Get PDF
    Abstract. Electronic Health/Medical Records (EHR/EMR) lay the foundation for securely maintaining medical records. The traditional EHR systems are not effectively managed data manipulation, delayed communication, trustless data storage, data cooperation, and distribution. Blockchain technology can play a major role in healthcare cases. This is because it uses decentralized distributed ledgers to securely manage all parties within the network. It also handles individual data through smart contracts, which can be pre-programmed by the patient for access and maintenance of healthcare data. This thesis focuses on exploring the blockchain in digital healthcare services such as Electronic Health/Medical Records (EHR/EMR). Blockchain-based implementations of Ethereum allow patients to store their medical data with smart contracts that can perform activities such as Registration, Data Append, and Data Retrieve. The challenges faced during the implementation of blockchain protocols are discussed and analyzed in the scope of finding sustainable solutions to develop secure and reliable operation

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ kryptografickĂœmi protokoly poskytujĂ­cĂ­ ochranu soukromĂ­, kterĂ© jsou určeny pro zabezpečenĂ­ komunikačnĂ­ch a informačnĂ­ch systĂ©mĆŻ tvoƙícĂ­ch heterogennĂ­ sĂ­tě. PrĂĄce se zaměƙuje pƙedevĆĄĂ­m na moĆŸnosti vyuĆŸitĂ­ nekonvenčnĂ­ch kryptografickĂœch prostƙedkĆŻ, kterĂ© poskytujĂ­ rozơíƙenĂ© bezpečnostnĂ­ poĆŸadavky, jako je napƙíklad ochrana soukromĂ­ uĆŸivatelĆŻ komunikačnĂ­ho systĂ©mu. V prĂĄci je stanovena vĂœpočetnĂ­ nĂĄročnost kryptografickĂœch a matematickĂœch primitiv na rĆŻznĂœch zaƙízenĂ­ch, kterĂ© se podĂ­lĂ­ na zabezpečenĂ­ heterogennĂ­ sĂ­tě. HlavnĂ­ cĂ­le prĂĄce se zaměƙujĂ­ na nĂĄvrh pokročilĂœch kryptografickĂœch protokolĆŻ poskytujĂ­cĂ­ch ochranu soukromĂ­. V prĂĄci jsou navrĆŸeny celkově tƙi protokoly, kterĂ© vyuĆŸĂ­vajĂ­ skupinovĂœch podpisĆŻ zaloĆŸenĂœch na bilineĂĄrnĂ­m pĂĄrovĂĄnĂ­ pro zajiĆĄtěnĂ­ ochrany soukromĂ­ uĆŸivatelĆŻ. Tyto navrĆŸenĂ© protokoly zajiĆĄĆ„ujĂ­ ochranu soukromĂ­ a nepopiratelnost po celou dobu datovĂ© komunikace spolu s autentizacĂ­ a integritou pƙenĂĄĆĄenĂœch zprĂĄv. Pro navĂœĆĄenĂ­ vĂœkonnosti navrĆŸenĂœch protokolĆŻ je vyuĆŸito optimalizačnĂ­ch technik, napƙ. dĂĄvkovĂ©ho ověƙovĂĄnĂ­, tak aby protokoly byly praktickĂ© i pro heterogennĂ­ sĂ­tě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Security and Privacy in Mobile Computing: Challenges and Solutions

    Get PDF
    abstract: Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing. This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Efficient Anonymous Biometric Matching in Privacy-Aware Environments

    Get PDF
    Video surveillance is an important tool used in security and environmental monitoring, however, the widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. To identify these individuals for protection, the most reliable approach is to use biometric signals as they are immutable and highly discriminative. If misused, these characteristics of biometrics can seriously defeat the goal of privacy protection. In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure is proposed based on biometric signals for privacy-aware video surveillance. The ABAC procedure uses Secure Multi-party Computational (SMC) based protocols to verify membership of an incoming individual without knowing his/her true identity. To make SMC-based protocols scalable to large biometric databases, I introduce the k-Anonymous Quantization (kAQ) framework to provide an effective and secure tradeoff of privacy and complexity. kAQ limits systems knowledge of the incoming individual to k maximally dissimilar candidates in the database, where k is a design parameter that controls the amount of complexity-privacy tradeoff. The relationship between biometric similarity and privacy is experimentally validated using a twin iris database. The effectiveness of the entire system is demonstrated based on a public iris biometric database. To provide the protected subjects with full access to their privacy information in video surveillance system, I develop a novel privacy information management system that allows subjects to access their information via the same biometric signals used for ABAC. The system is composed of two encrypted-domain protocols: the privacy information encryption protocol encrypts the original video records using the iris pattern acquired during ABAC procedure; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of my framework

    Privacy-Respecting Smart Video Surveillance Based on Usage Control Enforcement

    Get PDF
    This research introduces a conceptual framework for enforcing privacy-related restrictions in smart video surveillance systems based on danger levels and incident types to be handled. It increases the selectivity of surveillance by restricting data processing to individuals associated to incidents under investigation. Constraints are enforced by usage control, which is instantiated for video surveillance for the first time and enables tailoring such systems to comply with data protection law

    Usalduse vÀhendamine ja turvalisuse parandamine zk-SNARK-ides ja kinnitusskeemides

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsioonezk-SNARK-id on tĂ”husad ja praktilised mitteinteraktiivsed tĂ”estussĂŒsteemid, mis on konstrueeritud viitestringi mudelis ning tĂ€nu kompaktsetele tĂ”estustele ja vĂ€ga tĂ”husale verifitseeritavusele on need laialdaselt kasutusele vĂ”etud suuremahulistes praktilistes rakendustes. Selles töös uurime zk-SNARK-e kahest vaatenurgast: nende usalduse vĂ€hendamine ja turvalisuse tugevdamine. Esimeses suunas uurime kui palju saab vĂ€hendada usaldust paaristuspĂ”histe zk-SNARK-ide puhul ilma nende tĂ”husust ohverdamata niiviisi, et kasutajad saavad teatud turvataseme ka siis kui seadistusfaas tehti pahatahtlikult vĂ”i kui avalikustati seadistusfaasi salajane teave. Me pakume vĂ€lja mĂ”ned tĂ”husad konstruktsioonid, mis suudavad takistada zk-SNARK-i seadistusfaasi rĂŒndeid ja mis saavutavad senisest tugevama turvataseme. NĂ€itame ka seda, et sarnased tehnikad vĂ”imaldavad leevendada usaldust tagauksega kinnitusskeemides, mis on krĂŒptograafiliste primitiivide veel ĂŒks silmapaistev perekond ja mis samuti nĂ”ub usaldatud seadistusfaasi. Teises suunas esitame mĂ”ned tĂ”husad konstruktsioonid, mis tagavad parema turvalisuse minimaalsete lisakuludega. MĂ”ned esitatud konstruktsioonidest vĂ”imaldavad lihtsustada praegusi TK-turvalisi protokolle, nimelt privaatsust sĂ€ilitavate nutilepingusĂŒsteemide Hawk ja Gyges konstruktsiooni, ja parandada nende tĂ”husust. Uusi konstruktsioone saab aga otse kasutada uutes protokollides, mis soovivad kasutada zk-SNARK-e. Osa vĂ€ljapakutud zk-SNARK-e on implementeeritud teegis Libsnark ja empiirilised tulemused kinnitavad, et usalduse vĂ€hendamiseks vĂ”i suurema turvalisuse saavutamiseks on arvutuslikud lisakulud vĂ€ikesed.Zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs) are an efficient family of NIZK proof systems that are constructed in the Common Reference String (CRS) model and due to their succinct proofs and very efficient verification, they are widely adopted in large-scale practical applications. In this thesis, we study zk-SNARKs from two perspectives, namely reducing trust and improving security in them. In the first direction, we investigate how much one can mitigate trust in pairing-based zk-SNARKs without sacrificing their efficiency. In such constructions, the parties of protocol will obtain a certain level of security even if the setup phase was done maliciously or the secret information of the setup phase was revealed. As a result of this direction, we present some efficient constructions that can resist against subverting of the setup phase of zk-SNARKs and achieve a certain level of security which is stronger than before. We also show that similar techniques will allow us to mitigate the trust in the trapdoor commitment schemes that are another prominent family of cryptographic primitives that require a trusted setup phase. In the second direction, we present some efficient constructions that achieve more security with minimal overhead. Some of the presented constructions allow to simplify the construction of current UC-secure protocols and improve their efficiency. New constructions can be directly deployed in any novel protocols that aim to use zk-SNARKs. Some of the proposed zk-SNARKs are implemented in Libsnark, the state-of-the-art library for zk-SNARKs, and empirical experiences confirm that the computational cost to mitigate the trust or to achieve more security is practical.https://www.ester.ee/record=b535927
    corecore