59 research outputs found

    Enabling Privacy-preserving Auctions in Big Data

    Full text link
    We study how to enable auctions in the big data context to solve many upcoming data-based decision problems in the near future. We consider the characteristics of the big data including, but not limited to, velocity, volume, variety, and veracity, and we believe any auction mechanism design in the future should take the following factors into consideration: 1) generality (variety); 2) efficiency and scalability (velocity and volume); 3) truthfulness and verifiability (veracity). In this paper, we propose a privacy-preserving construction for auction mechanism design in the big data, which prevents adversaries from learning unnecessary information except those implied in the valid output of the auction. More specifically, we considered one of the most general form of the auction (to deal with the variety), and greatly improved the the efficiency and scalability by approximating the NP-hard problems and avoiding the design based on garbled circuits (to deal with velocity and volume), and finally prevented stakeholders from lying to each other for their own benefit (to deal with the veracity). We achieve these by introducing a novel privacy-preserving winner determination algorithm and a novel payment mechanism. Additionally, we further employ a blind signature scheme as a building block to let bidders verify the authenticity of their payment reported by the auctioneer. The comparison with peer work shows that we improve the asymptotic performance of peer works' overhead from the exponential growth to a linear growth and from linear growth to a logarithmic growth, which greatly improves the scalability

    PS-TRUST: Provably Secure Solution for Truthful Double Spectrum Auctions

    Full text link
    Truthful spectrum auctions have been extensively studied in recent years. Truthfulness makes bidders bid their true valuations, simplifying greatly the analysis of auctions. However, revealing one's true valuation causes severe privacy disclosure to the auctioneer and other bidders. To make things worse, previous work on secure spectrum auctions does not provide adequate security. In this paper, based on TRUST, we propose PS-TRUST, a provably secure solution for truthful double spectrum auctions. Besides maintaining the properties of truthfulness and special spectrum reuse of TRUST, PS-TRUST achieves provable security against semi-honest adversaries in the sense of cryptography. Specifically, PS-TRUST reveals nothing about the bids to anyone in the auction, except the auction result. To the best of our knowledge, PS-TRUST is the first provably secure solution for spectrum auctions. Furthermore, experimental results show that the computation and communication overhead of PS-TRUST is modest, and its practical applications are feasible.Comment: 9 pages, 4 figures, submitted to Infocom 201

    Applying Secure Multi-party Computation in Practice

    Get PDF
    In this work, we present solutions for technical difficulties in deploying secure multi-party computation in real-world applications. We will first give a brief overview of the current state of the art, bring out several shortcomings and address them. The main contribution of this work is an end-to-end process description of deploying secure multi-party computation for the first large-scale registry-based statistical study on linked databases. Involving large stakeholders like government institutions introduces also some non-technical requirements like signing contracts and negotiating with the Data Protection Agency

    Turvalise ühisarvutuse rakendamine

    Get PDF
    Andmetest on kasu vaid siis kui neid saab kasutada. Eriti suur lisandväärtus tekib siis, kui ühendada andmed erinevatest allikatest. Näiteks, liites kokku maksu- ja haridusandmed, saab riik läbi viia kõrghariduse erialade tasuvusanalüüse. Sama kehtib ka erasektoris - ühendades pankade maksekohustuste andmebaasid, saab efektiivsemalt tuvastada kõrge krediidiriskiga kliente. Selline andmekogude ühendamine on aga tihti konfidentsiaalsus- või privaatsusnõuete tõttu keelatud. Õigustatult, sest suuremahulised ühendatud andmekogud on atraktiivsed sihtmärgid nii häkkeritele kui ka ametnikele ja andmebaaside administraatoritele, kes oma õigusi kuritarvitada võivad. Seda sorti rünnete vastus aitab turvalise ühisarvutuse tehnoloogia kasutamine, mis võimaldab mitmed osapoolel andmeid ühiselt analüüsida, ilma et keegi neist pääseks ligi üksikutele kirjetele. Oma esimesest rakendamisest praktikas 2008. aastal on turvalise ühisarvutuse tehnoloogia praeguseks jõudnud seisu, kus seda juurutatakse hajusates rakendustes üle interneti ning seda pakutakse ka osana teistest teenustest. Käesolevas töös keskendume turvalise ühisarvutuse praktikas rakendamise tehnilistele küsimustele. Alustuseks tutvustame esimesi selle tehnoloogia rakendusi, tuvastame veel lahendamata probleeme ning pakume töö käigus välja lahendusi. Töö põhitulemus on samm-sammuline ülevaade sellise juurutuse elutsüklist, kasutades näitena esimest turvalise ühisarvutuse abil läbi viidud suuremahulisi registriandmeid hõlmavat uuringut. Sealhulgas anname ülevaate ka mittetehnilistest toimingutest nagu lepingute sõlmimine ja Andmekaitse Inspektsiooniga suhtlemine, mis tulenevad suurte organisatsioonide kaasamisest nagu seda on riigiasutused. Tulevikku vaadates pakume välja lahenduse, mis ühendab endas födereeritud andmevahetusplatvormi ja turvalise ühisarvutuse tehnoloogiat. Konkreetse lahendusena pakume Eesti riigi andmevahetuskihi X-tee täiustamist turvalise ühisarvutuse teenusega Sharemind. Selline arhitektuur võimaldaks mitmeid olemasolevaid andmekogusid uuringuteks liita efektiivselt ja turvaliselt, ilma üksikisikute privaatsust rikkumata.Data is useful only when used. This is especially true if one is able to combine several data sets. For example, combining income and educational data, it is possible for a government to get a return of investment overview of educational investments. The same is true in private sector. Combining data sets of financial obligations of their customers, banks could issue loans with lower credit risks. However, this kind of data sharing is often forbidden as citizens and customers have their privacy expectations. Moreover, such a combined database becomes an interesting target for both hackers as well as nosy officials and administrators taking advantage of their position. Secure multi-party computation is a technology that allows several parties to collaboratively analyse data without seeing any individual values. This technology is suitable for the above mentioned scenarios protecting user privacy from both insider and outsider attacks. With first practical applications using secure multi-party computation developed in 2000s, the technology is now mature enough to be used in distributed deployments and even offered as part of a service. In this work, we present solutions for technical difficulties in deploying secure multi-party computation in real-world applications. We will first give a brief overview of the current state of the art, bring out several shortcomings and address them. The main contribution of this work is an end-to-end process description of deploying secure multi-party computation for the first large-scale registry-based statistical study on linked databases. Involving large stakeholders like government institutions introduces also some non-technical requirements like signing contracts and negotiating with the Data Protection Agency. Looking into the future, we propose to deploy secure multi-party computation technology as a service on a federated data exchange infrastructure. This allows privacy-preserving analysis to be carried out faster and more conveniently, thus promoting a more informed government

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu

    The development of distributed and peer-to-peer systems for future smart grids

    Full text link
    The widespread application of smart grid concept has promoted the development of modern power systems featured with smart facilities, distributed resources and advanced ICT, and shifted towards complex cyber-physical and internet-of-things (IoT) embedded system. The traditional centralized system structure or management mode is faced with the challenges of coping with the growing network traffic, computing burden, demand for flexible services, and risks from cyber-attacks. In this regard, the development of distributed systems, as a valuable research theme, has sparked attentions from researchers and practitioners, which involves several crucial concerns including data security, reliability, and privacy. As a potential solution, blockchain (BC) technology shows its proper applicability due to its characteristics, but it encounters some problems such as unsatisfied resource efficiency. Meanwhile, the increasing integration of distributed system and distributed renewable generation in power system has raised challenges in the system stability and efficient management. In above context, this research focuses on the development of distributed and peer-to-peer (P2P) systems for future smart grids. Firstly, the research comprehensively reviews the-state-of-art of BC and IoT in smart grids, then put forwards their potential application scenarios in future grids with discussing the related challenges. Afterwards, this research integrates homomorphic cryptography with the technical components of BC as a basic paradigm to propose a distributed, secure and privacy-preserving smart meter data aggregation framework, providing the utility with high robust data management services. In addition, an agent bidding based trading scheme is designed for users to purchase electricity from the small-scale renewable power plant under stand-alone system, making individual bidding data not exposed in the storage and entire trading process even if the distributed system nodes are eavesdropped. In order to cope with the negative influences from distributed generation, this research proposes a deviation penalty method to help narrow the gap between the real-time demand/output and pre-determined transaction outcomes in P2P trading under power distribution system. At the end of this thesis, the potential future research works are discussed
    corecore