1,475 research outputs found

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Hybrid Cloud-Based Privacy Preserving Clustering as Service for Enterprise Big Data

    Get PDF
    Clustering as service is being offered by many cloud service providers. It helps enterprises to learn hidden patterns and learn knowledge from large, big data generated by enterprises. Though it brings lot of value to enterprises, it also exposes the data to various security and privacy threats. Privacy preserving clustering is being proposed a solution to address this problem. But the privacy preserving clustering as outsourced service model involves too much overhead on querying user, lacks adaptivity to incremental data and involves frequent interaction between service provider and the querying user. There is also a lack of personalization to clustering by the querying user. This work “Locality Sensitive Hashing for Transformed Dataset (LSHTD)” proposes a hybrid cloud-based clustering as service model for streaming data that address the problems in the existing model such as privacy preserving k-means clustering outsourcing under multiple keys (PPCOM) and secure nearest neighbor clustering (SNNC) models, The solution combines hybrid cloud, LSHTD clustering algorithm as outsourced service model. Through experiments, the proposed solution is able is found to reduce the computation cost by 23% and communication cost by 6% and able to provide better clustering accuracy with ARI greater than 4.59% compared to existing works

    Protection of big data privacy

    Full text link
    In recent years, big data have become a hot research topic. The increasing amount of big data also increases the chance of breaching the privacy of individuals. Since big data require high computational power and large storage, distributed systems are used. As multiple parties are involved in these systems, the risk of privacy violation is increased. There have been a number of privacy-preserving mechanisms developed for privacy protection at different stages (e.g., data generation, data storage, and data processing) of a big data life cycle. The goal of this paper is to provide a comprehensive overview of the privacy preservation mechanisms in big data and present the challenges for existing mechanisms. In particular, in this paper, we illustrate the infrastructure of big data and the state-of-the-art privacy-preserving mechanisms in each stage of the big data life cycle. Furthermore, we discuss the challenges and future research directions related to privacy preservation in big data
    corecore