732 research outputs found

    Language in Our Time: An Empirical Analysis of Hashtags

    Get PDF
    Hashtags in online social networks have gained tremendous popularity during the past five years. The resulting large quantity of data has provided a new lens into modern society. Previously, researchers mainly rely on data collected from Twitter to study either a certain type of hashtags or a certain property of hashtags. In this paper, we perform the first large-scale empirical analysis of hashtags shared on Instagram, the major platform for hashtag-sharing. We study hashtags from three different dimensions including the temporal-spatial dimension, the semantic dimension, and the social dimension. Extensive experiments performed on three large-scale datasets with more than 7 million hashtags in total provide a series of interesting observations. First, we show that the temporal patterns of hashtags can be categorized into four different clusters, and people tend to share fewer hashtags at certain places and more hashtags at others. Second, we observe that a non-negligible proportion of hashtags exhibit large semantic displacement. We demonstrate hashtags that are more uniformly shared among users, as quantified by the proposed hashtag entropy, are less prone to semantic displacement. In the end, we propose a bipartite graph embedding model to summarize users' hashtag profiles, and rely on these profiles to perform friendship prediction. Evaluation results show that our approach achieves an effective prediction with AUC (area under the ROC curve) above 0.8 which demonstrates the strong social signals possessed in hashtags.Comment: WWW 201

    Privacy-Aware Recommendation with Private-Attribute Protection using Adversarial Learning

    Full text link
    Recommendation is one of the critical applications that helps users find information relevant to their interests. However, a malicious attacker can infer users' private information via recommendations. Prior work obfuscates user-item data before sharing it with recommendation system. This approach does not explicitly address the quality of recommendation while performing data obfuscation. Moreover, it cannot protect users against private-attribute inference attacks based on recommendations. This work is the first attempt to build a Recommendation with Attribute Protection (RAP) model which simultaneously recommends relevant items and counters private-attribute inference attacks. The key idea of our approach is to formulate this problem as an adversarial learning problem with two main components: the private attribute inference attacker, and the Bayesian personalized recommender. The attacker seeks to infer users' private-attribute information according to their items list and recommendations. The recommender aims to extract users' interests while employing the attacker to regularize the recommendation process. Experiments show that the proposed model both preserves the quality of recommendation service and protects users against private-attribute inference attacks.Comment: The Thirteenth ACM International Conference on Web Search and Data Mining (WSDM 2020

    Towards Query Logs for Privacy Studies: On Deriving Search Queries from Questions

    Get PDF
    Translating verbose information needs into crisp search queries is a phenomenon that is ubiquitous but hardly understood. Insights into this process could be valuable in several applications, including synthesizing large privacy-friendly query logs from public Web sources which are readily available to the academic research community. In this work, we take a step towards understanding query formulation by tapping into the rich potential of community question answering (CQA) forums. Specifically, we sample natural language (NL) questions spanning diverse themes from the Stack Exchange platform, and conduct a large-scale conversion experiment where crowdworkers submit search queries they would use when looking for equivalent information. We provide a careful analysis of this data, accounting for possible sources of bias during conversion, along with insights into user-specific linguistic patterns and search behaviors. We release a dataset of 7,000 question-query pairs from this study to facilitate further research on query understanding.Comment: ECIR 2020 Short Pape

    Security and Privacy for Big Data: A Systematic Literature Review

    Get PDF
    Big data is currently a hot research topic, with four million hits on Google scholar in October 2016. One reason for the popularity of big data research is the knowledge that can be extracted from analyzing these large data sets. However, data can contain sensitive information, and data must therefore be sufficiently protected as it is stored and processed. Furthermore, it might also be required to provide meaningful, proven, privacy guarantees if the data can be linked to individuals. To the best of our knowledge, there exists no systematic overview of the overlap between big data and the area of security and privacy. Consequently, this review aims to explore security and privacy research within big data, by outlining and providing structure to what research currently exists. Moreover, we investigate which papers connect security and privacy with big data, and which categories these papers cover. Ultimately, is security and privacy research for big data different from the rest of the research within the security and privacy domain? To answer these questions, we perform a systematic literature review (SLR), where we collect recent papers from top conferences, and categorize them in order to provide an overview of the security and privacy topics present within the context of big data. Within each category we also present a qualitative analysis of papers representative for that specific area. Furthermore, we explore and visualize the relationship between the categories. Thus, the objective of this review is to provide a snapshot of the current state of security and privacy research for big data, and to discover where further research is required

    Equity of Attention: Amortizing Individual Fairness in Rankings

    Get PDF
    Rankings of people and items are at the heart of selection-making, match-making, and recommender systems, ranging from employment sites to sharing economy platforms. As ranking positions influence the amount of attention the ranked subjects receive, biases in rankings can lead to unfair distribution of opportunities and resources, such as jobs or income. This paper proposes new measures and mechanisms to quantify and mitigate unfairness from a bias inherent to all rankings, namely, the position bias, which leads to disproportionately less attention being paid to low-ranked subjects. Our approach differs from recent fair ranking approaches in two important ways. First, existing works measure unfairness at the level of subject groups while our measures capture unfairness at the level of individual subjects, and as such subsume group unfairness. Second, as no single ranking can achieve individual attention fairness, we propose a novel mechanism that achieves amortized fairness, where attention accumulated across a series of rankings is proportional to accumulated relevance. We formulate the challenge of achieving amortized individual fairness subject to constraints on ranking quality as an online optimization problem and show that it can be solved as an integer linear program. Our experimental evaluation reveals that unfair attention distribution in rankings can be substantial, and demonstrates that our method can improve individual fairness while retaining high ranking quality.Comment: Accepted to SIGIR 201
    • …
    corecore