565 research outputs found

    Routing-Verification-as-a-Service (RVaaS): Trustworthy Routing Despite Insecure Providers

    Full text link
    Computer networks today typically do not provide any mechanisms to the users to learn, in a reliable manner, which paths have (and have not) been taken by their packets. Rather, it seems inevitable that as soon as a packet leaves the network card, the user is forced to trust the network provider to forward the packets as expected or agreed upon. This can be undesirable, especially in the light of today's trend toward more programmable networks: after a successful cyber attack on the network management system or Software-Defined Network (SDN) control plane, an adversary in principle has complete control over the network. This paper presents a low-cost and efficient solution to detect misbehaviors and ensure trustworthy routing over untrusted or insecure providers, in particular providers whose management system or control plane has been compromised (e.g., using a cyber attack). We propose Routing-Verification-as-a-Service (RVaaS): RVaaS offers clients a flexible interface to query information relevant to their traffic, while respecting the autonomy of the network provider. RVaaS leverages key features of OpenFlow-based SDNs to combine (passive and active) configuration monitoring, logical data plane verification and actual in-band tests, in a novel manner

    SecReach: Secure Reachability Computation on Encrypted Location Check-in Data

    Get PDF
    Reachability, which answers whether one person is reachable from another through a sequence of contacts within a period of time, is of great importance in many domains such as social behavior analysis. Recently, with the prevalence of various location-based services (LBSs), a great amount of spatiotemporal location check-in data is generated by individual GPS-equipped mobile devices and collected by LBS companies, which stimulates research on reachability queries in these location check-in datasets. Meanwhile, a growing trend is for LBS companies to use scalable and cost-effective clouds to collect, store, and analyze data, which makes it necessary to encrypt location check-in data before outsourcing due to privacy concerns. In this paper, for the first time, we propose a scheme, SecReach, to securely evaluate reachability queries on encrypted location check-in data by using somewhat homomorphic encryption (SWHE). We prove that our scheme is secure against a semihonest cloud server. We also present a proof-of-concept implementation using the state-of-the-art SWHE library (i.e., HElib), which shows the efficiency and feasibility of our scheme

    Injecting Uncertainty in Graphs for Identity Obfuscation

    Full text link
    Data collected nowadays by social-networking applications create fascinating opportunities for building novel services, as well as expanding our understanding about social structures and their dynamics. Unfortunately, publishing social-network graphs is considered an ill-advised practice due to privacy concerns. To alleviate this problem, several anonymization methods have been proposed, aiming at reducing the risk of a privacy breach on the published data, while still allowing to analyze them and draw relevant conclusions. In this paper we introduce a new anonymization approach that is based on injecting uncertainty in social graphs and publishing the resulting uncertain graphs. While existing approaches obfuscate graph data by adding or removing edges entirely, we propose using a finer-grained perturbation that adds or removes edges partially: this way we can achieve the same desired level of obfuscation with smaller changes in the data, thus maintaining higher utility. Our experiments on real-world networks confirm that at the same level of identity obfuscation our method provides higher usefulness than existing randomized methods that publish standard graphs.Comment: VLDB201

    A flexible architecture for privacy-aware trust management

    Get PDF
    In service-oriented systems a constellation of services cooperate, sharing potentially sensitive information and responsibilities. Cooperation is only possible if the different participants trust each other. As trust may depend on many different factors, in a flexible framework for Trust Management (TM) trust must be computed by combining different types of information. In this paper we describe the TAS3 TM framework which integrates independent TM systems into a single trust decision point. The TM framework supports intricate combinations whilst still remaining easily extensible. It also provides a unified trust evaluation interface to the (authorization framework of the) services. We demonstrate the flexibility of the approach by integrating three distinct TM paradigms: reputation-based TM, credential-based TM, and Key Performance Indicator TM. Finally, we discuss privacy concerns in TM systems and the directions to be taken for the definition of a privacy-friendly TM architecture.\u

    Privacy Preserving Network Security Data Analytics: Architectures and System Design

    Get PDF
    An incessant rhythm of data breaches, data leaks, and privacy exposure highlights the need to improve control over potentially sensitive data. History has shown that neither public nor private sector organizations are immune. Lax data handling, incidental leakage, and adversarial breaches are all contributing factors. Prudent organizations should consider the sensitive nature of network security data. Logged events often contain data elements that are directly correlated with sensitive information about people and their activities -- often at the same level of detail as sensor data. Our intent is to produce a database which holds network security data representative of people\u27s interaction with the network mid-points and end-points without the problems of identifiability. In this paper we discuss architectures and propose a system design that supports a risk based approach to privacy preserving data publication of network security data that enables network security data analytics research

    SLEC: A Novel Serverless RFID Authentication Protocol Based on Elliptic Curve Cryptography

    Get PDF
    Radio Frequency Identification (RFID) is one of the leading technologies in the Internet of Things (IoT) to create an efficient and reliable system to securely identify objects in many environments such as business, health, and manufacturing areas. Since the RFID server, reader, and tag communicate via insecure channels, mutual authentication between the reader and the tag is necessary for secure communication. The central database server supports the authentication of the reader and the tag by storing and managing the network data. Recent lightweight RFID authentication protocols have been proposed to satisfy the security features of RFID communication. A serverless RFID system is a new promising solution to alternate the central database for mobile RFID models. In this model, the reader and the tag perform the mutual authentication without the support of the central database server. However, many security challenges arise from implementing the lightweight RFID authentication protocols in the serverless RFID network. We propose a new robust serverless RFID authentication protocol based on the Elliptic Curve Cryptography (ECC) to prevent the security attacks on the network and maintain the confidentiality and the privacy of the authentication messages and tag information and location. While most of the current protocols assume a secure channel in the setup phase to transmit the communication data, we consider in our protocol an insecure setup phase between the server, reader, and tag to ensure that the data can be renewed from any checkpoint server along with the route of the mobile RFID network. Thus, we implemented the elliptic curve cryptography in the setup phase (renewal phase) to transmit and store the data and the public key of the server to any reader or tag so that the latter can perform the mutual authentication successfully. The proposed model is compared under the classification of the serverless model in term of computation cost and security resistance

    Similarity search and data mining techniques for advanced database systems.

    Get PDF
    Modern automated methods for measurement, collection, and analysis of data in industry and science are providing more and more data with drastically increasing structure complexity. On the one hand, this growing complexity is justified by the need for a richer and more precise description of real-world objects, on the other hand it is justified by the rapid progress in measurement and analysis techniques that allow the user a versatile exploration of objects. In order to manage the huge volume of such complex data, advanced database systems are employed. In contrast to conventional database systems that support exact match queries, the user of these advanced database systems focuses on applying similarity search and data mining techniques. Based on an analysis of typical advanced database systems — such as biometrical, biological, multimedia, moving, and CAD-object database systems — the following three challenging characteristics of complexity are detected: uncertainty (probabilistic feature vectors), multiple instances (a set of homogeneous feature vectors), and multiple representations (a set of heterogeneous feature vectors). Therefore, the goal of this thesis is to develop similarity search and data mining techniques that are capable of handling uncertain, multi-instance, and multi-represented objects. The first part of this thesis deals with similarity search techniques. Object identification is a similarity search technique that is typically used for the recognition of objects from image, video, or audio data. Thus, we develop a novel probabilistic model for object identification. Based on it, two novel types of identification queries are defined. In order to process the novel query types efficiently, we introduce an index structure called Gauss-tree. In addition, we specify further probabilistic models and query types for uncertain multi-instance objects and uncertain spatial objects. Based on the index structure, we develop algorithms for an efficient processing of these query types. Practical benefits of using probabilistic feature vectors are demonstrated on a real-world application for video similarity search. Furthermore, a similarity search technique is presented that is based on aggregated multi-instance objects, and that is suitable for video similarity search. This technique takes multiple representations into account in order to achieve better effectiveness. The second part of this thesis deals with two major data mining techniques: clustering and classification. Since privacy preservation is a very important demand of distributed advanced applications, we propose using uncertainty for data obfuscation in order to provide privacy preservation during clustering. Furthermore, a model-based and a density-based clustering method for multi-instance objects are developed. Afterwards, original extensions and enhancements of the density-based clustering algorithms DBSCAN and OPTICS for handling multi-represented objects are introduced. Since several advanced database systems like biological or multimedia database systems handle predefined, very large class systems, two novel classification techniques for large class sets that benefit from using multiple representations are defined. The first classification method is based on the idea of a k-nearest-neighbor classifier. It employs a novel density-based technique to reduce training instances and exploits the entropy impurity of the local neighborhood in order to weight a given representation. The second technique addresses hierarchically-organized class systems. It uses a novel hierarchical, supervised method for the reduction of large multi-instance objects, e.g. audio or video, and applies support vector machines for efficient hierarchical classification of multi-represented objects. User benefits of this technique are demonstrated by a prototype that performs a classification of large music collections. The effectiveness and efficiency of all proposed techniques are discussed and verified by comparison with conventional approaches in versatile experimental evaluations on real-world datasets
    corecore