4,722 research outputs found

    SoK: Cryptographically Protected Database Search

    Full text link
    Protected database search systems cryptographically isolate the roles of reading from, writing to, and administering the database. This separation limits unnecessary administrator access and protects data in the case of system breaches. Since protected search was introduced in 2000, the area has grown rapidly; systems are offered by academia, start-ups, and established companies. However, there is no best protected search system or set of techniques. Design of such systems is a balancing act between security, functionality, performance, and usability. This challenge is made more difficult by ongoing database specialization, as some users will want the functionality of SQL, NoSQL, or NewSQL databases. This database evolution will continue, and the protected search community should be able to quickly provide functionality consistent with newly invented databases. At the same time, the community must accurately and clearly characterize the tradeoffs between different approaches. To address these challenges, we provide the following contributions: 1) An identification of the important primitive operations across database paradigms. We find there are a small number of base operations that can be used and combined to support a large number of database paradigms. 2) An evaluation of the current state of protected search systems in implementing these base operations. This evaluation describes the main approaches and tradeoffs for each base operation. Furthermore, it puts protected search in the context of unprotected search, identifying key gaps in functionality. 3) An analysis of attacks against protected search for different base queries. 4) A roadmap and tools for transforming a protected search system into a protected database, including an open-source performance evaluation platform and initial user opinions of protected search.Comment: 20 pages, to appear to IEEE Security and Privac

    Privacy-preserving targeted advertising scheme for IPTV using the cloud

    Get PDF
    In this paper, we present a privacy-preserving scheme for targeted advertising via the Internet Protocol TV (IPTV). The scheme uses a communication model involving a collection of viewers/subscribers, a content provider (IPTV), an advertiser, and a cloud server. To provide high quality directed advertising service, the advertiser can utilize not only demographic information of subscribers, but also their watching habits. The latter includes watching history, preferences for IPTV content and watching rate, which are published on the cloud server periodically (e.g. weekly) along with anonymized demographics. Since the published data may leak sensitive information about subscribers, it is safeguarded using cryptographic techniques in addition to the anonymization of demographics. The techniques used by the advertiser, which can be manifested in its queries to the cloud, are considered (trade) secrets and therefore are protected as well. The cloud is oblivious to the published data, the queries of the advertiser as well as its own responses to these queries. Only a legitimate advertiser, endorsed with a so-called {\em trapdoor} by the IPTV, can query the cloud and utilize the query results. The performance of the proposed scheme is evaluated with experiments, which show that the scheme is suitable for practical usage

    A practical and secure multi-keyword search method over encrypted cloud data

    Get PDF
    Cloud computing technologies become more and more popular every year, as many organizations tend to outsource their data utilizing robust and fast services of clouds while lowering the cost of hardware ownership. Although its benefits are welcomed, privacy is still a remaining concern that needs to be addressed. We propose an efficient privacy-preserving search method over encrypted cloud data that utilizes minhash functions. Most of the work in literature can only support a single feature search in queries which reduces the effectiveness. One of the main advantages of our proposed method is the capability of multi-keyword search in a single query. The proposed method is proved to satisfy adaptive semantic security definition. We also combine an effective ranking capability that is based on term frequency-inverse document frequency (tf-idf) values of keyword document pairs. Our analysis demonstrates that the proposed scheme is proved to be privacy-preserving, efficient and effective

    Building Confidential and Efficient Query Services in the Cloud with RASP Data Perturbation

    Full text link
    With the wide deployment of public cloud computing infrastructures, using clouds to host data query services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly reduce the in-house workload to fully realize the benefits of cloud computing. We propose the RASP data perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. The RASP data perturbation method combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, which allows existing indexing techniques to be applied to speedup range query processing. The kNN-R algorithm is designed to work with the RASP range query algorithm to process the kNN queries. We have carefully analyzed the attacks on data and queries under a precisely defined threat model and realistic security assumptions. Extensive experiments have been conducted to show the advantages of this approach on efficiency and security.Comment: 18 pages, to appear in IEEE TKDE, accepted in December 201

    Privacy-Preserving Secret Shared Computations using MapReduce

    Full text link
    Data outsourcing allows data owners to keep their data at \emph{untrusted} clouds that do not ensure the privacy of data and/or computations. One useful framework for fault-tolerant data processing in a distributed fashion is MapReduce, which was developed for \emph{trusted} private clouds. This paper presents algorithms for data outsourcing based on Shamir's secret-sharing scheme and for executing privacy-preserving SQL queries such as count, selection including range selection, projection, and join while using MapReduce as an underlying programming model. Our proposed algorithms prevent an adversary from knowing the database or the query while also preventing output-size and access-pattern attacks. Interestingly, our algorithms do not involve the database owner, which only creates and distributes secret-shares once, in answering any query, and hence, the database owner also cannot learn the query. Logically and experimentally, we evaluate the efficiency of the algorithms on the following parameters: (\textit{i}) the number of communication rounds (between a user and a server), (\textit{ii}) the total amount of bit flow (between a user and a server), and (\textit{iii}) the computational load at the user and the server.\BComment: IEEE Transactions on Dependable and Secure Computing, Accepted 01 Aug. 201
    corecore