575 research outputs found

    A look ahead approach to secure multi-party protocols

    Get PDF
    Secure multi-party protocols have been proposed to enable non-colluding parties to cooperate without a trusted server. Even though such protocols prevent information disclosure other than the objective function, they are quite costly in computation and communication. Therefore, the high overhead makes it necessary for parties to estimate the utility that can be achieved as a result of the protocol beforehand. In this paper, we propose a look ahead approach, specifically for secure multi-party protocols to achieve distributed k-anonymity, which helps parties to decide if the utility benefit from the protocol is within an acceptable range before initiating the protocol. Look ahead operation is highly localized and its accuracy depends on the amount of information the parties are willing to share. Experimental results show the effectiveness of the proposed methods

    Data Mining Applications in Banking Sector While Preserving Customer Privacy

    Get PDF
    In real-life data mining applications, organizations cooperate by using each other’s data on the same data mining task for more accurate results, although they may have different security and privacy concerns. Privacy-preserving data mining (PPDM) practices involve rules and techniques that allow parties to collaborate on data mining applications while keeping their data private. The objective of this paper is to present a number of PPDM protocols and show how PPDM can be used in data mining applications in the banking sector. For this purpose, the paper discusses homomorphic cryptosystems and secure multiparty computing. Supported by experimental analysis, the paper demonstrates that data mining tasks such as clustering and Bayesian networks (association rules) that are commonly used in the banking sector can be efficiently and securely performed. This is the first study that combines PPDM protocols with applications for banking data mining. Doi: 10.28991/ESJ-2022-06-06-014 Full Text: PD

    Decomposable Naive Bayes Classifier for Partitioned Data

    Get PDF
    Most learning algorithms are designed to work on a single dataset. However, with the growth of networks, data is increasingly distributed over many databases in many different geographical sites. These databases cannot be moved to other network sites due to security, size, privacy, or data ownership consideration. In this paper, we propose two decomposable versions of Naive Bayes Classifier for horizontally and vertically partitioned data. The goal of our algorithms is to achieve the learning objectives for any data distribution encountered across the network by exchanging minimum local summaries among the participating sites

    Privacy-preserving Data Sharing on Vertically Partitioned Data

    Full text link
    In this work, we introduce a differentially private method for generating synthetic data from vertically partitioned data, \emph{i.e.}, where data of the same individuals is distributed across multiple data holders or parties. We present a differentially privacy stochastic gradient descent (DP-SGD) algorithm to train a mixture model over such partitioned data using variational inference. We modify a secure multiparty computation (MPC) framework to combine MPC with differential privacy (DP), in order to use differentially private MPC effectively to learn a probabilistic generative model under DP on such vertically partitioned data. Assuming the mixture components contain no dependencies across different parties, the objective function can be factorized into a sum of products of the contributions calculated by the parties. Finally, MPC is used to compute the aggregate between the different contributions. Moreover, we rigorously define the privacy guarantees with respect to the different players in the system. To demonstrate the accuracy of our method, we run our algorithm on the Adult dataset from the UCI machine learning repository, where we obtain comparable results to the non-partitioned case

    Distributed learning: Developing a predictive model based on data from multiple hospitals without data leaving the hospital – A real life proof of concept

    Get PDF
    AbstractPurposeOne of the major hurdles in enabling personalized medicine is obtaining sufficient patient data to feed into predictive models. Combining data originating from multiple hospitals is difficult because of ethical, legal, political, and administrative barriers associated with data sharing. In order to avoid these issues, a distributed learning approach can be used. Distributed learning is defined as learning from data without the data leaving the hospital.Patients and methodsClinical data from 287 lung cancer patients, treated with curative intent with chemoradiation (CRT) or radiotherapy (RT) alone were collected from and stored in 5 different medical institutes (123 patients at MAASTRO (Netherlands, Dutch), 24 at Jessa (Belgium, Dutch), 34 at Liege (Belgium, Dutch and French), 48 at Aachen (Germany, German) and 58 at Eindhoven (Netherlands, Dutch)).A Bayesian network model is adapted for distributed learning (watch the animation: http://youtu.be/nQpqMIuHyOk). The model predicts dyspnea, which is a common side effect after radiotherapy treatment of lung cancer.ResultsWe show that it is possible to use the distributed learning approach to train a Bayesian network model on patient data originating from multiple hospitals without these data leaving the individual hospital. The AUC of the model is 0.61 (95%CI, 0.51–0.70) on a 5-fold cross-validation and ranges from 0.59 to 0.71 on external validation sets.ConclusionDistributed learning can allow the learning of predictive models on data originating from multiple hospitals while avoiding many of the data sharing barriers. Furthermore, the distributed learning approach can be used to extract and employ knowledge from routine patient data from multiple hospitals while being compliant to the various national and European privacy laws

    Security in Data Mining- A Comprehensive Survey

    Get PDF
    Data mining techniques, while allowing the individuals to extract hidden knowledge on one hand, introduce a number of privacy threats on the other hand. In this paper, we study some of these issues along with a detailed discussion on the applications of various data mining techniques for providing security. An efficient classification technique when used properly, would allow an user to differentiate between a phishing website and a normal website, to classify the users as normal users and criminals based on their activities on Social networks (Crime Profiling) and to prevent users from executing malicious codes by labelling them as malicious. The most important applications of Data mining is the detection of intrusions, where different Data mining techniques can be applied to effectively detect an intrusion and report in real time so that necessary actions are taken to thwart the attempts of the intruder. Privacy Preservation, Outlier Detection, Anomaly Detection and PhishingWebsite Classification are discussed in this paper
    • …
    corecore