1,818 research outputs found

    A Privacy-Preserving Framework for Collaborative Association Rule Mining in Cloud

    Get PDF
    Collaborative Data Mining facilitates multiple organizations to integrate their datasets and extract useful knowledge from their joint datasets for mutual benefits. The knowledge extracted in this manner is found to be superior to the knowledge extracted locally from a single organization’s dataset. With the rapid development of outsourcing, there is a growing interest for organizations to outsource their data mining tasks to a cloud environment to effectively address their economic and performance demands. However, due to privacy concerns and stringent compliance regulations, organizations do not want to share their private datasets neither with the cloud nor with other participating organizations. In this paper, we address the problem of outsourcing association rule mining task to a federated cloud environment in a privacy-preserving manner. Specifically, we propose a privacy-preserving framework that allows a set of users, each with a private dataset, to outsource their encrypted databases and the cloud returns the association rules extracted from the aggregated encrypted databases to the participating users. Our proposed solution ensures the confidentiality of the outsourced data and also minimizes the users’ participation during the association rule mining process. Additionally, we show that the proposed solution is secure under the standard semi-honest model and demonstrate its practicality

    Mining Privacy-Preserving Association Rules based on Parallel Processing in Cloud Computing

    Full text link
    With the onset of the Information Era and the rapid growth of information technology, ample space for processing and extracting data has opened up. However, privacy concerns may stifle expansion throughout this area. The challenge of reliable mining techniques when transactions disperse across sources is addressed in this study. This work looks at the prospect of creating a new set of three algorithms that can obtain maximum privacy, data utility, and time savings while doing so. This paper proposes a unique double encryption and Transaction Splitter approach to alter the database to optimize the data utility and confidentiality tradeoff in the preparation phase. This paper presents a customized apriori approach for the mining process, which does not examine the entire database to estimate the support for each attribute. Existing distributed data solutions have a high encryption complexity and an insufficient specification of many participants' properties. Proposed solutions provide increased privacy protection against a variety of attack models. Furthermore, in terms of communication cycles and processing complexity, it is much simpler and quicker. Proposed work tests on top of a realworld transaction database demonstrate that the aim of the proposed method is realistic

    A Review on: Association Rule Mining Using Privacy for Partitioned Database

    Get PDF
    Data Analysis techniques that are Association manage mining and Frequent thing set mining are two prominent and broadly utilized for different applications. The conventional framework concentrated independently on vertically parceled database and on a level plane apportioned databases on the premise of this presenting a framework which concentrate on both on a level plane and vertically divided databases cooperatively with protection safeguarding component. Information proprietors need to know the continuous thing sets or affiliation rules from an aggregate information set and unveil or uncover as few data about their crude information as could reasonably be expected to other information proprietors and outsiders. To guarantee information protection a Symmetric Encryption Technique is utilized to show signs of improvement result. Cloud supported successive thing set mining arrangement used to exhibit an affiliation govern mining arrangement. The subsequent arrangements are intended for outsourced databases that permit various information proprietors to proficiently share their information safely without trading off on information protection. Information security is one of the key procedures in outsourcing information to different outside clients. Customarily Fast Distribution Mining calculation was proposed for securing conveyed information. These business locales an issue by secure affiliation governs over parceled information in both even and vertical. A Frequent thing sets calculation and Distributed affiliation administer digging calculation is used for doing above method adequately in divided information, which incorporates administrations of the information in outsourcing process for disseminated databases. This work keeps up or keeps up proficient security over vertical and flat perspective of representation in secure mining applications

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    Paillier based Privacy-Preserving Mining of Association Rules from Outsourced Transaction Databases

    Get PDF
    The Cloud computing is computing in which massive assembling of remote servers are managed to authorized centralized data storage and online access to computer resources , while Privacy-preserving data mining (PPDM) is one of the latest inclination in privacy and security studies. It is determined by one of the important positioning issues of the information era - the right to privacy. With the use of cloud computing services, an organization lack in computational resources can deploy its mining requires to an outsider service provider. However, both the elements and the association rules of the deployed database are observed as private property of the organization. The data owner converts its data and sends it to the server, ships mining queries to the server, and recoup the actual design from the extricate designs received from the outsider server for corporate privacy prevention. In this theory, we study the problems of outsourcing the association rule mining mechanisms within a corporate privacy-preserving framework. The Rob Frugal method is founded with defeat the security obligations of outsourced data. This method is an encryption plan which is based on one to one substitution ciphers for items and fake pattern from the database. In this system attacker discovers data by guessing attack, also man in the middle attack which is possible on Rob Frugal encryption to conquer this problem, the proposed technique encompasses Paillier encryption for enhancing the security level for outsourced data with the less complexity and to protect against the forging the contents of the correspondence. FP-growth algorithm is used for generating association rules for improving the performance and for preserving a homomorphic encryption algorithm Paillier cryptosystem is being used

    Protection of big data privacy

    Full text link
    In recent years, big data have become a hot research topic. The increasing amount of big data also increases the chance of breaching the privacy of individuals. Since big data require high computational power and large storage, distributed systems are used. As multiple parties are involved in these systems, the risk of privacy violation is increased. There have been a number of privacy-preserving mechanisms developed for privacy protection at different stages (e.g., data generation, data storage, and data processing) of a big data life cycle. The goal of this paper is to provide a comprehensive overview of the privacy preservation mechanisms in big data and present the challenges for existing mechanisms. In particular, in this paper, we illustrate the infrastructure of big data and the state-of-the-art privacy-preserving mechanisms in each stage of the big data life cycle. Furthermore, we discuss the challenges and future research directions related to privacy preservation in big data
    • …
    corecore