751 research outputs found

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Click fraud : how to spot it, how to stop it?

    Get PDF
    Online search advertising is currently the greatest source of revenue for many Internet giants such as Google™, Yahoo!™, and Bing™. The increased number of specialized websites and modern profiling techniques have all contributed to an explosion of the income of ad brokers from online advertising. The single biggest threat to this growth is however click fraud. Trained botnets and even individuals are hired by click-fraud specialists in order to maximize the revenue of certain users from the ads they publish on their websites, or to launch an attack between competing businesses. Most academics and consultants who study online advertising estimate that 15% to 35% of ads in pay per click (PPC) online advertising systems are not authentic. In the first two quarters of 2010, US marketers alone spent 5.7billiononPPCads,wherePPCadsarebetween45and50percentofallonlineadspending.Onaverageabout5.7 billion on PPC ads, where PPC ads are between 45 and 50 percent of all online ad spending. On average about 1.5 billion is wasted due to click-fraud. These fraudulent clicks are believed to be initiated by users in poor countries, or botnets, who are trained to click on specific ads. For example, according to a 2010 study from Information Warfare Monitor, the operators of Koobface, a program that installed malicious software to participate in click fraud, made over $2 million in just over a year. The process of making such illegitimate clicks to generate revenue is called click-fraud. Search engines claim they filter out most questionable clicks and either not charge for them or reimburse advertisers that have been wrongly billed. However this is a hard task, despite the claims that brokers\u27 efforts are satisfactory. In the simplest scenario, a publisher continuously clicks on the ads displayed on his own website in order to make revenue. In a more complicated scenario. a travel agent may hire a large, globally distributed, botnet to click on its competitor\u27s ads, hence depleting their daily budget. We analyzed those different types of click fraud methods and proposed new methodologies to detect and prevent them real time. While traditional commercial approaches detect only some specific types of click fraud, Collaborative Click Fraud Detection and Prevention (CCFDP) system, an architecture that we have implemented based on the proposed methodologies, can detect and prevents all major types of click fraud. The proposed solution analyzes the detailed user activities on both, the server side and client side collaboratively to better describe the intention of the click. Data fusion techniques are developed to combine evidences from several data mining models and to obtain a better estimation of the quality of the click traffic. Our ideas are experimented through the development of the Collaborative Click Fraud Detection and Prevention (CCFDP) system. Experimental results show that the CCFDP system is better than the existing commercial click fraud solution in three major aspects: 1) detecting more click fraud especially clicks generated by software; 2) providing prevention ability; 3) proposing the concept of click quality score for click quality estimation. In the CCFDP initial version, we analyzed the performances of the click fraud detection and prediction model by using a rule base algorithm, which is similar to most of the existing systems. We have assigned a quality score for each click instead of classifying the click as fraud or genuine, because it is hard to get solid evidence of click fraud just based on the data collected, and it is difficult to determine the real intention of users who make the clicks. Results from initial version revealed that the diversity of CF attack Results from initial version revealed that the diversity of CF attack types makes it hard for a single counter measure to prevent click fraud. Therefore, it is important to be able to combine multiple measures capable of effective protection from click fraud. Therefore, in the CCFDP improved version, we provide the traffic quality score as a combination of evidence from several data mining algorithms. We have tested the system with a data from an actual ad campaign in 2007 and 2008. We have compared the results with Google Adwords reports for the same campaign. Results show that a higher percentage of click fraud present even with the most popular search engine. The multiple model based CCFDP always estimated less valid traffic compare to Google. Sometimes the difference is as high as 53%. Detection of duplicates, fast and efficient, is one of the most important requirement in any click fraud solution. Usually duplicate detection algorithms run in real time. In order to provide real time results, solution providers should utilize data structures that can be updated in real time. In addition, space requirement to hold data should be minimum. In this dissertation, we also addressed the problem of detecting duplicate clicks in pay-per-click streams. We proposed a simple data structure, Temporal Stateful Bloom Filter (TSBF), an extension to the regular Bloom Filter and Counting Bloom Filter. The bit vector in the Bloom Filter was replaced with a status vector. Duplicate detection results of TSBF method is compared with Buffering, FPBuffering, and CBF methods. False positive rate of TSBF is less than 1% and it does not have false negatives. Space requirement of TSBF is minimal among other solutions. Even though Buffering does not have either false positives or false negatives its space requirement increases exponentially with the size of the stream data size. When the false positive rate of the FPBuffering is set to 1% its false negative rate jumps to around 5%, which will not be tolerated by most of the streaming data applications. We also compared the TSBF results with CBF. TSBF uses only half the space or less than standard CBF with the same false positive probability. One of the biggest successes with CCFDP is the discovery of new mercantile click bot, the Smart ClickBot. We presented a Bayesian approach for detecting the Smart ClickBot type clicks. The system combines evidence extracted from web server sessions to determine the final class of each click. Some of these evidences can be used alone, while some can be used in combination with other features for the click bot detection. During training and testing we also addressed the class imbalance problem. Our best classifier shows recall of 94%. and precision of 89%, with F1 measure calculated as 92%. The high accuracy of our system proves the effectiveness of the proposed methodology. Since the Smart ClickBot is a sophisticated click bot that manipulate every possible parameters to go undetected, the techniques that we discussed here can lead to detection of other types of software bots too. Despite the enormous capabilities of modern machine learning and data mining techniques in modeling complicated problems, most of the available click fraud detection systems are rule-based. Click fraud solution providers keep the rules as a secret weapon and bargain with others to prove their superiority. We proposed validation framework to acquire another model of the clicks data that is not rule dependent, a model that learns the inherent statistical regularities of the data. Then the output of both models is compared. Due to the uniqueness of the CCFDP system architecture, it is better than current commercial solution and search engine/ISP solution. The system protects Pay-Per-Click advertisers from click fraud and improves their Return on Investment (ROI). The system can also provide an arbitration system for advertiser and PPC publisher whenever the click fraud argument arises. Advertisers can gain their confidence on PPC advertisement by having a channel to argue the traffic quality with big search engine publishers. The results of this system will booster the internet economy by eliminating the shortcoming of PPC business model. General consumer will gain their confidence on internet business model by reducing fraudulent activities which are numerous in current virtual internet world

    A Taxonomy of Privacy-Preserving Record Linkage Techniques

    Get PDF
    The process of identifying which records in two or more databases correspond to the same entity is an important aspect of data quality activities such as data pre-processing and data integration. Known as record linkage, data matching or entity resolution, this process has attracted interest from researchers in fields such as databases and data warehousing, data mining, information systems, and machine learning. Record linkage has various challenges, including scalability to large databases, accurate matching and classification, and privacy and confidentiality. The latter challenge arises because commonly personal identifying data, such as names, addresses and dates of birth of individuals, are used in the linkage process. When databases are linked across organizations, the issue of how to protect the privacy and confidentiality of such sensitive information is crucial to successful application of record linkage. In this paper we present an overview of techniques that allow the linking of databases between organizations while at the same time preserving the privacy of these data. Known as 'privacy-preserving record linkage' (PPRL), various such techniques have been developed. We present a taxonomy of PPRL techniques to characterize these techniques along 15 dimensions, and conduct a survey of PPRL techniques. We then highlight shortcomings of current techniques and discuss avenues for future research

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Enhanced Exchange of Information in Financial Investigations

    Get PDF

    Enhanced Exchange of Information in Financial Investigations

    Get PDF
    corecore