1,704 research outputs found

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    Hybrid Workload Enabled and Secure Healthcare Monitoring Sensing Framework in Distributed Fog-Cloud Network

    Get PDF
    The Internet of Medical Things (IoMT) workflow applications have been rapidly growing in practice. These internet-based applications can run on the distributed healthcare sensing system, which combines mobile computing, edge computing and cloud computing. Offloading and scheduling are the required methods in the distributed network. However, a security issue exists and it is hard to run different types of tasks (e.g., security, delay-sensitive, and delay-tolerant tasks) of IoMT applications on heterogeneous computing nodes. This work proposes a new healthcare architecture for workflow applications based on heterogeneous computing nodes layers: an application layer, management layer, and resource layer. The goal is to minimize the makespan of all applications. Based on these layers, the work proposes a secure offloading-efficient task scheduling (SEOS) algorithm framework, which includes the deadline division method, task sequencing rules, homomorphic security scheme, initial scheduling, and the variable neighbourhood searching method. The performance evaluation results show that the proposed plans outperform all existing baseline approaches for healthcare applications in terms of makespan

    Microservices-based IoT Applications Scheduling in Edge and Fog Computing: A Taxonomy and Future Directions

    Full text link
    Edge and Fog computing paradigms utilise distributed, heterogeneous and resource-constrained devices at the edge of the network for efficient deployment of latency-critical and bandwidth-hungry IoT application services. Moreover, MicroService Architecture (MSA) is increasingly adopted to keep up with the rapid development and deployment needs of the fast-evolving IoT applications. Due to the fine-grained modularity of the microservices along with their independently deployable and scalable nature, MSA exhibits great potential in harnessing both Fog and Cloud resources to meet diverse QoS requirements of the IoT application services, thus giving rise to novel paradigms like Osmotic computing. However, efficient and scalable scheduling algorithms are required to utilise the said characteristics of the MSA while overcoming novel challenges introduced by the architecture. To this end, we present a comprehensive taxonomy of recent literature on microservices-based IoT applications scheduling in Edge and Fog computing environments. Furthermore, we organise multiple taxonomies to capture the main aspects of the scheduling problem, analyse and classify related works, identify research gaps within each category, and discuss future research directions.Comment: 35 pages, 10 figures, submitted to ACM Computing Survey
    • …
    corecore