4,599 research outputs found

    Privacy-Aware Recommendation with Private-Attribute Protection using Adversarial Learning

    Full text link
    Recommendation is one of the critical applications that helps users find information relevant to their interests. However, a malicious attacker can infer users' private information via recommendations. Prior work obfuscates user-item data before sharing it with recommendation system. This approach does not explicitly address the quality of recommendation while performing data obfuscation. Moreover, it cannot protect users against private-attribute inference attacks based on recommendations. This work is the first attempt to build a Recommendation with Attribute Protection (RAP) model which simultaneously recommends relevant items and counters private-attribute inference attacks. The key idea of our approach is to formulate this problem as an adversarial learning problem with two main components: the private attribute inference attacker, and the Bayesian personalized recommender. The attacker seeks to infer users' private-attribute information according to their items list and recommendations. The recommender aims to extract users' interests while employing the attacker to regularize the recommendation process. Experiments show that the proposed model both preserves the quality of recommendation service and protects users against private-attribute inference attacks.Comment: The Thirteenth ACM International Conference on Web Search and Data Mining (WSDM 2020

    Privacy Intelligence: A Survey on Image Sharing on Online Social Networks

    Full text link
    Image sharing on online social networks (OSNs) has become an indispensable part of daily social activities, but it has also led to an increased risk of privacy invasion. The recent image leaks from popular OSN services and the abuse of personal photos using advanced algorithms (e.g. DeepFake) have prompted the public to rethink individual privacy needs when sharing images on OSNs. However, OSN image sharing itself is relatively complicated, and systems currently in place to manage privacy in practice are labor-intensive yet fail to provide personalized, accurate and flexible privacy protection. As a result, an more intelligent environment for privacy-friendly OSN image sharing is in demand. To fill the gap, we contribute a systematic survey of 'privacy intelligence' solutions that target modern privacy issues related to OSN image sharing. Specifically, we present a high-level analysis framework based on the entire lifecycle of OSN image sharing to address the various privacy issues and solutions facing this interdisciplinary field. The framework is divided into three main stages: local management, online management and social experience. At each stage, we identify typical sharing-related user behaviors, the privacy issues generated by those behaviors, and review representative intelligent solutions. The resulting analysis describes an intelligent privacy-enhancing chain for closed-loop privacy management. We also discuss the challenges and future directions existing at each stage, as well as in publicly available datasets.Comment: 32 pages, 9 figures. Under revie

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness

    Making Users Indistinguishable: Attribute-wise Unlearning in Recommender Systems

    Full text link
    With the growing privacy concerns in recommender systems, recommendation unlearning, i.e., forgetting the impact of specific learned targets, is getting increasing attention. Existing studies predominantly use training data, i.e., model inputs, as the unlearning target. However, we find that attackers can extract private information, i.e., gender, race, and age, from a trained model even if it has not been explicitly encountered during training. We name this unseen information as attribute and treat it as the unlearning target. To protect the sensitive attribute of users, Attribute Unlearning (AU) aims to degrade attacking performance and make target attributes indistinguishable. In this paper, we focus on a strict but practical setting of AU, namely Post-Training Attribute Unlearning (PoT-AU), where unlearning can only be performed after the training of the recommendation model is completed. To address the PoT-AU problem in recommender systems, we design a two-component loss function that consists of i) distinguishability loss: making attribute labels indistinguishable from attackers, and ii) regularization loss: preventing drastic changes in the model that result in a negative impact on recommendation performance. Specifically, we investigate two types of distinguishability measurements, i.e., user-to-user and distribution-to-distribution. We use the stochastic gradient descent algorithm to optimize our proposed loss. Extensive experiments on three real-world datasets demonstrate the effectiveness of our proposed methods

    Secure Split Learning against Property Inference, Data Reconstruction, and Feature Space Hijacking Attacks

    Full text link
    Split learning of deep neural networks (SplitNN) has provided a promising solution to learning jointly for the mutual interest of a guest and a host, which may come from different backgrounds, holding features partitioned vertically. However, SplitNN creates a new attack surface for the adversarial participant, holding back its practical use in the real world. By investigating the adversarial effects of highly threatening attacks, including property inference, data reconstruction, and feature hijacking attacks, we identify the underlying vulnerability of SplitNN and propose a countermeasure. To prevent potential threats and ensure the learning guarantees of SplitNN, we design a privacy-preserving tunnel for information exchange between the guest and the host. The intuition is to perturb the propagation of knowledge in each direction with a controllable unified solution. To this end, we propose a new activation function named R3eLU, transferring private smashed data and partial loss into randomized responses in forward and backward propagations, respectively. We give the first attempt to secure split learning against three threatening attacks and present a fine-grained privacy budget allocation scheme. The analysis proves that our privacy-preserving SplitNN solution provides a tight privacy budget, while the experimental results show that our solution performs better than existing solutions in most cases and achieves a good tradeoff between defense and model usability.Comment: 23 page

    Facial Data Minimization: Shallow Model as Your Privacy Filter

    Full text link
    Face recognition service has been used in many fields and brings much convenience to people. However, once the user's facial data is transmitted to a service provider, the user will lose control of his/her private data. In recent years, there exist various security and privacy issues due to the leakage of facial data. Although many privacy-preserving methods have been proposed, they usually fail when they are not accessible to adversaries' strategies or auxiliary data. Hence, in this paper, by fully considering two cases of uploading facial images and facial features, which are very typical in face recognition service systems, we proposed a data privacy minimization transformation (PMT) method. This method can process the original facial data based on the shallow model of authorized services to obtain the obfuscated data. The obfuscated data can not only maintain satisfactory performance on authorized models and restrict the performance on other unauthorized models but also prevent original privacy data from leaking by AI methods and human visual theft. Additionally, since a service provider may execute preprocessing operations on the received data, we also propose an enhanced perturbation method to improve the robustness of PMT. Besides, to authorize one facial image to multiple service models simultaneously, a multiple restriction mechanism is proposed to improve the scalability of PMT. Finally, we conduct extensive experiments and evaluate the effectiveness of the proposed PMT in defending against face reconstruction, data abuse, and face attribute estimation attacks. These experimental results demonstrate that PMT performs well in preventing facial data abuse and privacy leakage while maintaining face recognition accuracy.Comment: 14 pages, 11 figure
    corecore