3,746 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Privacy Preserving Attribute-Focused Anonymization Scheme for Healthcare Data Publishing

    Get PDF
    Advancements in Industry 4.0 brought tremendous improvements in the healthcare sector, such as better quality of treatment, enhanced communication, remote monitoring, and reduced cost. Sharing healthcare data with healthcare providers is crucial for harnessing the benefits of such improvements. In general, healthcare data holds sensitive information about individuals. Hence, sharing such data is challenging because of various security and privacy issues. According to privacy regulations and ethical requirements, it is essential to preserve the privacy of patients before sharing data for medical research. State-of-the-art literature on privacy preserving studies either uses cryptographic approaches to protect the privacy or uses anonymizing techniques regardless of the type of attributes, this results in poor protection and data utility. In this paper, we propose an attribute-focused privacy preserving data publishing scheme. The proposed scheme is two-fold, comprising a fixed-interval approach to protect numerical attributes and an improved l -diverse slicing approach to protect the categorical and sensitive attributes. In the fixed-interval approach, the original values of the healthcare data are replaced with an equivalent computed value. The improved l -diverse slicing approach partitions the data both horizontally and vertically to avoid privacy leaks. Extensive experiments with real-world datasets are conducted to evaluate the performance of the proposed scheme. The classification models built on anonymized dataset yields approximately 13% better accuracy than benchmarked algorithms. Experimental analyses show that the average information loss which is measured by normalized certainty penalty (NCP) is reduced by 12% compared to similar approaches. The attribute focused scheme not only provides data utility but also prevents the data from membership disclosures, attribute disclosures, and identity disclosures

    Multi-Task Learning for Email Search Ranking with Auxiliary Query Clustering

    Full text link
    User information needs vary significantly across different tasks, and therefore their queries will also differ considerably in their expressiveness and semantics. Many studies have been proposed to model such query diversity by obtaining query types and building query-dependent ranking models. These studies typically require either a labeled query dataset or clicks from multiple users aggregated over the same document. These techniques, however, are not applicable when manual query labeling is not viable, and aggregated clicks are unavailable due to the private nature of the document collection, e.g., in email search scenarios. In this paper, we study how to obtain query type in an unsupervised fashion and how to incorporate this information into query-dependent ranking models. We first develop a hierarchical clustering algorithm based on truncated SVD and varimax rotation to obtain coarse-to-fine query types. Then, we study three query-dependent ranking models, including two neural models that leverage query type information as additional features, and one novel multi-task neural model that views query type as the label for the auxiliary query cluster prediction task. This multi-task model is trained to simultaneously rank documents and predict query types. Our experiments on tens of millions of real-world email search queries demonstrate that the proposed multi-task model can significantly outperform the baseline neural ranking models, which either do not incorporate query type information or just simply feed query type as an additional feature.Comment: CIKM 201

    SoK: differentially private publication of trajectory data

    Get PDF
    Trajectory analysis holds many promises, from improvements in traffic management to routing advice or infrastructure development. However, learning users’ paths is extremely privacy-invasive. Therefore, there is a necessity to protect trajectories such that we preserve the global properties, useful for analysis, while specific and private information of individuals remains inaccessible. Trajectories, however, are difficult to protect, since they are sequential, highly dimensional, correlated, bound to geophysical restrictions, and easily mapped to semantic points of interest. This paper aims to establish a systematic framework on protective masking measures for trajectory databases with differentially private (DP) guarantees, including also utility properties, derived from ideas and limitations of existing proposals. To reach this goal, we systematize the utility metrics used throughout the literature, deeply analyze the DP granularity notions, explore and elaborate on the state of the art on privacy-enhancing mechanisms and their problems, and expose the main limitations of DP notions in the context of trajectories.We would like to thank the reviewers and shepherd for their useful comments and suggestions in the improvement of this paper. Javier Parra-Arnau is the recipient of a “Ramón y Cajal” fellowship funded by the Spanish Ministry of Science and Innovation. This work also received support from “la Caixa” Foundation (fellowship code LCF/BQ/PR20/11770009), the European Union’s H2020 program (Marie SkƂodowska-Curie grant agreement № 847648) from the Government of Spain under the project “COMPROMISE” (PID2020-113795RB-C31/AEI/10.13039/501100011033), and from the BMBF project “PROPOLIS” (16KIS1393K). The authors at KIT are supported by KASTEL Security Research Labs (Topic 46.23 of the Helmholtz Association) and Germany’s Excellence Strategy (EXC 2050/1 ‘CeTI’; ID 390696704).Peer ReviewedPostprint (published version

    SoK: Differentially Private Publication of Trajectory Data

    Get PDF
    Trajectory analysis holds many promises, from improvements in traffic management to routing advice or infrastructure development. However, learning users\u27 paths is extremely privacy-invasive. Therefore, there is a necessity to protect trajectories such that we preserve the global properties, useful for analysis, while specific and private information of individuals remains inaccessible. Trajectories, however, are difficult to protect, since they are sequential, highly dimensional, correlated, bound to geophysical restrictions, and easily mapped to semantic points of interest. This paper aims to establish a systematic framework on protective masking and synthetic-generation measures for trajectory databases with syntactic and differentially private (DP) guarantees, including also utility properties, derived from ideas and limitations of existing proposals. To reach this goal, we systematize the utility metrics used throughout the literature, deeply analyze the DP granularity notions, explore and elaborate on the state of the art on privacy-enhancing mechanisms and their problems, and expose the main limitations of DP notions in the context of trajectories

    Preserving Privacy in Cyber-physical-social systems: An Anonymity and Access Control Approach

    Get PDF
    With the significant development of mobile commerce, the integration of physical, social, and cyber worlds is increasingly common. The term Cyber Physical Social Systems is used to capture technology’s human-centric role. With the revolutionization of CPSS, privacy protections become a major concern for both customers and enterprises. Although data generalization by obfuscation and anonymity can provide protection for an individual’s privacy, overgeneralization may lead to less-valuable data. In this paper, we contrive generalization boundary techniques (k-anonymity) to maximize data usability while minimizing disclosure with a privacy access control mechanism. This paper proposes a combination of purpose-based access control models with an anonymity technique in distributed computing environments for privacy preserving policies and mechanisms that demonstrate policy conflicting problems. This combined approach will provide protections for individual personal information and make data sharable to authorized party with proper purposes. Here, we have examined data with k-anonymity to create a specific level of obfuscation that maintains the usefulness of data and used a heuristic approach to a privacy access control framework in which the privacy requirement is to satisfy the k-anonymity. The extensive experiments on both real-world and synthetic data sets show that the proposed privacy aware access control model with k- anonymity is practical and effective. It will generate an anonymized data set in accordance with the privacy clearance of a certain request and allow users access at different privacy levels, fulfilling some set of obligations and addressing privacy and utility requirements, flexible access control, and improved data availability, while guaranteeing a certain level of privacy.Ope
    • 

    corecore