407 research outputs found

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Advances and Open Problems in Federated Learning

    Get PDF
    Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service provider), while keeping the training data decentralized. FL embodies the principles of focused data collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting from traditional, centralized machine learning and data science approaches. Motivated by the explosive growth in FL research, this paper discusses recent advances and presents an extensive collection of open problems and challenges.Comment: Published in Foundations and Trends in Machine Learning Vol 4 Issue 1. See: https://www.nowpublishers.com/article/Details/MAL-08

    Machine learning to generate soil information

    Get PDF
    This thesis is concerned with the novel use of machine learning (ML) methods in soil science research. ML adoption in soil science has increased considerably, especially in pedometrics (the use of quantitative methods to study the variation of soils). In parallel, the size of the soil datasets has also increased thanks to projects of global impact that aim to rescue legacy data or new large extent surveys to collect new information. While we have big datasets and global projects, currently, modelling is mostly based on "traditional" ML approaches which do not take full advantage of these large data compilations. This compilation of these global datasets is severely limited by privacy concerns and, currently, no solution has been implemented to facilitate the process. If we consider the performance differences derived from the generality of global models versus the specificity of local models, there is still a debate on which approach is better. Either in global or local DSM, most applications are static. Even with the large soil datasets available to date, there is not enough soil data to perform a fully-empirical, space-time modelling. Considering these knowledge gaps, this thesis aims to introduce advanced ML algorithms and training techniques, specifically deep neural networks, for modelling large datasets at a global scale and provide new soil information. The research presented here has been successful at applying the latest advances in ML to improve upon some of the current approaches for soil modelling with large datasets. It has also created opportunities to utilise information, such as descriptive data, that has been generally disregarded. ML methods have been embraced by the soil community and their adoption is increasing. In the particular case of neural networks, their flexibility in terms of structure and training makes them a good candidate to improve on current soil modelling approaches

    Modeling, Predicting and Capturing Human Mobility

    Get PDF
    Realistic models of human mobility are critical for modern day applications, specifically for recommendation systems, resource planning and process optimization domains. Given the rapid proliferation of mobile devices equipped with Internet connectivity and GPS functionality today, aggregating large sums of individual geolocation data is feasible. The thesis focuses on methodologies to facilitate data-driven mobility modeling by drawing parallels between the inherent nature of mobility trajectories, statistical physics and information theory. On the applied side, the thesis contributions lie in leveraging the formulated mobility models to construct prediction workflows by adopting a privacy-by-design perspective. This enables end users to derive utility from location-based services while preserving their location privacy. Finally, the thesis presents several approaches to generate large-scale synthetic mobility datasets by applying machine learning approaches to facilitate experimental reproducibility

    Cryptography Based on Correlated Data: Foundations and Practice

    Get PDF
    Correlated data can be very useful in cryptography. For instance, if a uniformly random key is available to Alice and Bob, it can be used as an one-time pad to transmit a message with perfect security. With more elaborate forms of correlated data, the parties can achieve even more complex cryptographic tasks, such as secure multiparty computation. This thesis explores (from both a theoretical and a practical point of view) the topic of cryptography based on correlated data

    Countermeasures for the majority attack in blockchain distributed systems

    Get PDF
    La tecnología Blockchain es considerada como uno de los paradigmas informáticos más importantes posterior al Internet; en función a sus características únicas que la hacen ideal para registrar, verificar y administrar información de diferentes transacciones. A pesar de esto, Blockchain se enfrenta a diferentes problemas de seguridad, siendo el ataque del 51% o ataque mayoritario uno de los más importantes. Este consiste en que uno o más mineros tomen el control de al menos el 51% del Hash extraído o del cómputo en una red; de modo que un minero puede manipular y modificar arbitrariamente la información registrada en esta tecnología. Este trabajo se enfocó en diseñar e implementar estrategias de detección y mitigación de ataques mayoritarios (51% de ataque) en un sistema distribuido Blockchain, a partir de la caracterización del comportamiento de los mineros. Para lograr esto, se analizó y evaluó el Hash Rate / Share de los mineros de Bitcoin y Crypto Ethereum, seguido del diseño e implementación de un protocolo de consenso para controlar el poder de cómputo de los mineros. Posteriormente, se realizó la exploración y evaluación de modelos de Machine Learning para detectar software malicioso de tipo Cryptojacking.DoctoradoDoctor en Ingeniería de Sistemas y Computació

    Estimation of real traffic radiated emissions from electric vehicles in terms of the driving profile using neural networks

    Get PDF
    The increment of the use of electric vehicles leads to a worry about measuring its principal source of environmental pollution: electromagnetic emissions. Given the complexity of directly measuring vehicular radiated emissions in real traffic, the main contribution of this PhD thesis is to propose an indirect solution to estimate such type of vehicular emissions. Relating the on-road vehicular radiated emissions with the driving profile is a complicated task. This is because it is not possible to directly measure the vehicular radiated interferences in real traffic due to potential interferences from another electromagnetic wave sources. This thesis presents a microscopic artificial intelligence model based on neural networks to estimate real traffic radiated emissions of electric vehicles in terms of the driving dynamics. Instantaneous values of measured speed and calculated acceleration have been used to characterize the driving profile. Experimental electromagnetic interference tests have been carried out with a Vectrix electric motorcycle as well as Twizy electric cars in semi-anechoic chambers. Both the motorcycle and the car have been subjected to different urban and interurban driving profiles. Time Domain measurement methodology of electromagnetic radiated emissions has been adopted in this work to save the overall measurement time. The relationship between the magnetic radiated emissions of the Twizy and the corresponding speed has been very noticeable. Maximum magnetic field levels have been observed during high speed cruising in extra-urban driving and acceleration in urban environments. A comparative study of the prediction performance between various static and dynamic neural models has been introduced. The Multilayer Perceptron feedforward neural network trained with Extreme Learning Machines has achieved the best estimation results of magnetic radiated disturbances as function of instantaneous speed and acceleration. In this way, on-road magnetic radiated interferences from an electric vehicle equipped with a Global Positioning System can be estimated. This research line will allow quantify the pollutant electromagnetic emissions of electric vehicles and study new policies to preserve the environment
    corecore