1,077 research outputs found

    Information actors beyond modernity and coloniality in times of climate change:A comparative design ethnography on the making of monitors for sustainable futures in Curaçao and Amsterdam, between 2019-2022

    Get PDF
    In his dissertation, Mr. Goilo developed a cutting-edge theoretical framework for an Anthropology of Information. This study compares information in the context of modernity in Amsterdam and coloniality in Curaçao through the making process of monitors and develops five ways to understand how information can act towards sustainable futures. The research also discusses how the two contexts, that is modernity and coloniality, have been in informational symbiosis for centuries which is producing negative informational side effects within the age of the Anthropocene. By exploring the modernity-coloniality symbiosis of information, the author explains how scholars, policymakers, and data-analysts can act through historical and structural roots of contemporary global inequities related to the production and distribution of information. Ultimately, the five theses propose conditions towards the collective production of knowledge towards a more sustainable planet

    Hybrid Cloud-Based Privacy Preserving Clustering as Service for Enterprise Big Data

    Get PDF
    Clustering as service is being offered by many cloud service providers. It helps enterprises to learn hidden patterns and learn knowledge from large, big data generated by enterprises. Though it brings lot of value to enterprises, it also exposes the data to various security and privacy threats. Privacy preserving clustering is being proposed a solution to address this problem. But the privacy preserving clustering as outsourced service model involves too much overhead on querying user, lacks adaptivity to incremental data and involves frequent interaction between service provider and the querying user. There is also a lack of personalization to clustering by the querying user. This work “Locality Sensitive Hashing for Transformed Dataset (LSHTD)” proposes a hybrid cloud-based clustering as service model for streaming data that address the problems in the existing model such as privacy preserving k-means clustering outsourcing under multiple keys (PPCOM) and secure nearest neighbor clustering (SNNC) models, The solution combines hybrid cloud, LSHTD clustering algorithm as outsourced service model. Through experiments, the proposed solution is able is found to reduce the computation cost by 23% and communication cost by 6% and able to provide better clustering accuracy with ARI greater than 4.59% compared to existing works

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Split Federated Learning for 6G Enabled-Networks: Requirements, Challenges and Future Directions

    Full text link
    Sixth-generation (6G) networks anticipate intelligently supporting a wide range of smart services and innovative applications. Such a context urges a heavy usage of Machine Learning (ML) techniques, particularly Deep Learning (DL), to foster innovation and ease the deployment of intelligent network functions/operations, which are able to fulfill the various requirements of the envisioned 6G services. Specifically, collaborative ML/DL consists of deploying a set of distributed agents that collaboratively train learning models without sharing their data, thus improving data privacy and reducing the time/communication overhead. This work provides a comprehensive study on how collaborative learning can be effectively deployed over 6G wireless networks. In particular, our study focuses on Split Federated Learning (SFL), a technique recently emerged promising better performance compared with existing collaborative learning approaches. We first provide an overview of three emerging collaborative learning paradigms, including federated learning, split learning, and split federated learning, as well as of 6G networks along with their main vision and timeline of key developments. We then highlight the need for split federated learning towards the upcoming 6G networks in every aspect, including 6G technologies (e.g., intelligent physical layer, intelligent edge computing, zero-touch network management, intelligent resource management) and 6G use cases (e.g., smart grid 2.0, Industry 5.0, connected and autonomous systems). Furthermore, we review existing datasets along with frameworks that can help in implementing SFL for 6G networks. We finally identify key technical challenges, open issues, and future research directions related to SFL-enabled 6G networks

    Statistical Anomaly Discovery Through Visualization

    Get PDF
    Developing a deep understanding of data is a crucial part of decision-making processes. It often takes substantial time and effort to develop a solid understanding to make well-informed decisions. Data analysts often perform statistical analyses through visualization to develop such understanding. However, applicable insight can be difficult due to biases and anomalies in data. An often overlooked phenomenon is mix effects, in which subgroups of data exhibit patterns opposite to the data as a whole. This phenomenon is widespread and often leads inexperienced analysts to draw contradictory conclusions. Discovering such anomalies in data becomes challenging as data continue to grow in volume, dimensionality, and cardinality. Effectively designed data visualizations empower data analysts to reveal and understand patterns in data for studying such paradoxical anomalies. This research explores several approaches for combining statistical analysis and visualization to discover and examine anomalies in multidimensional data. It starts with an automatic anomaly detection method based on correlation comparison and experiments to determine the running time and complexity of the algorithm. Subsequently, the research investigates the design, development, and implementation of a series of visualization techniques to fulfill the needs of analysis through a variety of statistical methods. We create an interactive visual analysis system, Wiggum, for revealing various forms of mix effects. A user study to evaluate Wiggum strengthens understanding of the factors that contribute to the comprehension of statistical concepts. Furthermore, a conceptual model, visual correspondence, is presented to study how users can determine the identity of items between visual representations by interpreting the relationships between their respective visual encodings. It is practical to build visualizations with highly linked views informed by visual correspondence theory. We present a hybrid tree visualization technique, PatternTree, which applies the visual correspondence theory. PatternTree supports users to more readily discover statistical anomalies and explore their relationships. Overall, this dissertation contributes a merging of new visualization theory and designs for analysis of statistical anomalies, thereby leading the way to the creation of effective visualizations for statistical analysis

    Insights on Learning Tractable Probabilistic Graphical Models

    Get PDF

    A Comprehensive Survey on the Cooperation of Fog Computing Paradigm-Based IoT Applications: Layered Architecture, Real-Time Security Issues, and Solutions

    Get PDF
    The Internet of Things (IoT) can enable seamless communication between millions of billions of objects. As IoT applications continue to grow, they face several challenges, including high latency, limited processing and storage capacity, and network failures. To address these stated challenges, the fog computing paradigm has been introduced, purpose is to integrate the cloud computing paradigm with IoT to bring the cloud resources closer to the IoT devices. Thus, it extends the computing, storage, and networking facilities toward the edge of the network. However, data processing and storage occur at the IoT devices themselves in the fog-based IoT network, eliminating the need to transmit the data to the cloud. Further, it also provides a faster response as compared to the cloud. Unfortunately, the characteristics of fog-based IoT networks arise traditional real-time security challenges, which may increase severe concern to the end-users. However, this paper aims to focus on fog-based IoT communication, targeting real-time security challenges. In this paper, we examine the layered architecture of fog-based IoT networks along working of IoT applications operating within the context of the fog computing paradigm. Moreover, we highlight real-time security challenges and explore several existing solutions proposed to tackle these challenges. In the end, we investigate the research challenges that need to be addressed and explore potential future research directions that should be followed by the research community.©2023 The Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    ‘Conclusion: Youth aspirations, trajectories, and farming futures

    Get PDF
    This book commenced with a question of global importance: in a world in which farming populations are ageing, who is going to provide the planet’s peoples with the “sufficient, safe and nutritious food” that is needed to meet the “dietary needs and food preferences for an active and healthy life” (FAO 2006)? In other words, where are the people who are needed to generationally renew farming? As explained in the introduction, addressing this question meant going against the grain of much research on youth and agriculture. Rather than seeking to understand youth’s apparent disinterest in farming and their exodus from the countryside, the research teams focused on those youth and young adults who stayed in, returned, or relocated to rural areas and were involved in farming (often alongside various other economic activities). Thereby, the case studies presented in this book have put in the spotlight the next generation of farmers. In this concluding chapter, we draw out some important issues emerging from across the chapters and reflect on key differences. This way, we reiterate the various pathways of becoming a farmer, the main challenges experienced by these young farming women and men, and the roles that policies and organizations could play in facilitating the process of becoming a farmer
    corecore