69,855 research outputs found

    PEPSI: Privacy-Enhanced Participatory Sensing Infrastructure.

    Get PDF
    Participatory Sensing combines the ubiquity of mobile phones with sensing capabilities of Wireless Sensor Networks. It targets pervasive collection of information, e.g., temperature, traffic conditions, or health-related data. As users produce measurements from their mobile devices, voluntary participation becomes essential. However, a number of privacy concerns -- due to the personal information conveyed by data reports -- hinder large-scale deployment of participatory sensing applications. Prior work on privacy protection, for participatory sensing, has often relayed on unrealistic assumptions and with no provably-secure guarantees. The goal of this project is to introduce PEPSI: a Privacy-Enhanced Participatory Sensing Infrastructure. We explore realistic architectural assumptions and a minimal set of (formal) privacy requirements, aiming at protecting privacy of both data producers and consumers. We design a solution that attains privacy guarantees with provable security at very low additional computational cost and almost no extra communication overhead

    Mobile Application Security Platforms Survey

    Get PDF
    Nowadays Smartphone and other mobile devices have become incredibly important in every aspect of our life. Because they have practically offered same capabilities as desktop workstations as well as come to be powerful in terms of CPU (Central processing Unit), Storage and installing numerous applications. Therefore, Security is considered as an important factor in wireless communication technologies, particularly in a wireless ad-hoc network and mobile operating systems. Moreover, based on increasing the range of mobile application within variety of platforms, security is regarded as on the most valuable and considerable debate in terms of issues, trustees, reliabilities and accuracy. This paper aims to introduce a consolidated report of thriving security on mobile application platforms and providing knowledge of vital threats to the users and enterprises. Furthermore, in this paper, various techniques as well as methods for security measurements, analysis and prioritization within the peak of mobile platforms will be presented. Additionally, increases understanding and awareness of security on mobile application platforms to avoid detection, forensics and countermeasures used by the operating systems. Finally, this study also discusses security extensions for popular mobile platforms and analysis for a survey within a recent research in the area of mobile platform security

    Data Confidentiality in Mobile Ad hoc Networks

    Full text link
    Mobile ad hoc networks (MANETs) are self-configuring infrastructure-less networks comprised of mobile nodes that communicate over wireless links without any central control on a peer-to-peer basis. These individual nodes act as routers to forward both their own data and also their neighbours' data by sending and receiving packets to and from other nodes in the network. The relatively easy configuration and the quick deployment make ad hoc networks suitable the emergency situations (such as human or natural disasters) and for military units in enemy territory. Securing data dissemination between these nodes in such networks, however, is a very challenging task. Exposing such information to anyone else other than the intended nodes could cause a privacy and confidentiality breach, particularly in military scenarios. In this paper we present a novel framework to enhance the privacy and data confidentiality in mobile ad hoc networks by attaching the originator policies to the messages as they are sent between nodes. We evaluate our framework using the Network Simulator (NS-2) to check whether the privacy and confidentiality of the originator are met. For this we implemented the Policy Enforcement Points (PEPs), as NS-2 agents that manage and enforce the policies attached to packets at every node in the MANET.Comment: 12 page
    • …
    corecore