20,658 research outputs found

    Evaluating Privacy-Friendly Mobility Analytics on Aggregate Location Data

    Get PDF
    Information about people's movements and the locations they visit enables a wide number of mobility analytics applications, e.g., real-time traffic maps or urban planning, aiming to improve quality of life in modern smart-cities. Alas, the availability of users' fine-grained location data reveals sensitive information about them such as home and work places, lifestyles, political or religious inclinations. In an attempt to mitigate this, aggregation is often employed as a strategy that allows analytics and machine learning tasks while protecting the privacy of individual users' location traces. In this thesis, we perform an end-to-end evaluation of crowdsourced privacy-friendly location aggregation aiming to understand its usefulness for analytics as well as its privacy implications towards users who contribute their data. First, we present a time-series methodology which, along with privacy-friendly crowdsourcing of aggregate locations, supports mobility analytics such as traffic forecasting and mobility anomaly detection. Next, we design quantification frameworks and methodologies that let us reason about the privacy loss stemming from the collection or release of aggregate location information against knowledgeable adversaries that aim to infer users' profiles, locations, or membership. We then utilize these frameworks to evaluate defenses ranging from generalization and hiding, to differential privacy, which can be employed to prevent inferences on aggregate location statistics, in terms of privacy protection as well as utility loss towards analytics tasks. Our results highlight that, while location aggregation is useful for mobility analytics, it is a weak privacy protection mechanism in this setting and that additional defenses can only protect privacy if some statistical utility is sacrificed. Overall, the tools presented in this thesis can be used by providers who desire to assess the quality of privacy protection before data release and its results have several implications about current location data practices and applications

    Measuring Membership Privacy on Aggregate Location Time-Series

    Get PDF
    While location data is extremely valuable for various applications, disclosing it prompts serious threats to individuals' privacy. To limit such concerns, organizations often provide analysts with aggregate time-series that indicate, e.g., how many people are in a location at a time interval, rather than raw individual traces. In this paper, we perform a measurement study to understand Membership Inference Attacks (MIAs) on aggregate location time-series, where an adversary tries to infer whether a specific user contributed to the aggregates. We find that the volume of contributed data, as well as the regularity and particularity of users' mobility patterns, play a crucial role in the attack's success. We experiment with a wide range of defenses based on generalization, hiding, and perturbation, and evaluate their ability to thwart the attack vis-a-vis the utility loss they introduce for various mobility analytics tasks. Our results show that some defenses fail across the board, while others work for specific tasks on aggregate location time-series. For instance, suppressing small counts can be used for ranking hotspots, data generalization for forecasting traffic, hotspot discovery, and map inference, while sampling is effective for location labeling and anomaly detection when the dataset is sparse. Differentially private techniques provide reasonable accuracy only in very specific settings, e.g., discovering hotspots and forecasting their traffic, and more so when using weaker privacy notions like crowd-blending privacy. Overall, our measurements show that there does not exist a unique generic defense that can preserve the utility of the analytics for arbitrary applications, and provide useful insights regarding the disclosure of sanitized aggregate location time-series

    MobilitApp: Analysing mobility data of citizens in the metropolitan area of Barcelona

    Full text link
    MobilitApp is a platform designed to provide smart mobility services in urban areas. It is designed to help citizens and transport authorities alike. Citizens will be able to access the MobilitApp mobile application and decide their optimal transportation strategy by visualising their usual routes, their carbon footprint, receiving tips, analytics and general mobility information, such as traffic and incident alerts. Transport authorities and service providers will be able to access information about the mobility pattern of citizens to o er their best services, improve costs and planning. The MobilitApp client runs on Android devices and records synchronously, while running in the background, periodic location updates from its users. The information obtained is processed and analysed to understand the mobility patterns of our users in the city of Barcelona, Spain

    Privacy-Friendly Mobility Analytics using Aggregate Location Data

    Get PDF
    Location data can be extremely useful to study commuting patterns and disruptions, as well as to predict real-time traffic volumes. At the same time, however, the fine-grained collection of user locations raises serious privacy concerns, as this can reveal sensitive information about the users, such as, life style, political and religious inclinations, or even identities. In this paper, we study the feasibility of crowd-sourced mobility analytics over aggregate location information: users periodically report their location, using a privacy-preserving aggregation protocol, so that the server can only recover aggregates -- i.e., how many, but not which, users are in a region at a given time. We experiment with real-world mobility datasets obtained from the Transport For London authority and the San Francisco Cabs network, and present a novel methodology based on time series modeling that is geared to forecast traffic volumes in regions of interest and to detect mobility anomalies in them. In the presence of anomalies, we also make enhanced traffic volume predictions by feeding our model with additional information from correlated regions. Finally, we present and evaluate a mobile app prototype, called Mobility Data Donors (MDD), in terms of computation, communication, and energy overhead, demonstrating the real-world deployability of our techniques.Comment: Published at ACM SIGSPATIAL 201

    Are You in the Line? RSSI-based Queue Detection in Crowds

    Full text link
    Crowd behaviour analytics focuses on behavioural characteristics of groups of people instead of individuals' activities. This work considers human queuing behaviour which is a specific crowd behavior of groups. We design a plug-and-play system solution to the queue detection problem based on Wi-Fi/Bluetooth Low Energy (BLE) received signal strength indicators (RSSIs) captured by multiple signal sniffers. The goal of this work is to determine if a device is in the queue based on only RSSIs. The key idea is to extract features not only from individual device's data but also mobility similarity between data from multiple devices and mobility correlation observed by multiple sniffers. Thus, we propose single-device feature extraction, cross-device feature extraction, and cross-sniffer feature extraction for model training and classification. We systematically conduct experiments with simulated queue movements to study the detection accuracy. Finally, we compare our signal-based approach against camera-based face detection approach in a real-world social event with a real human queue. The experimental results indicate that our approach can reach minimum accuracy of 77% and it significantly outperforms the camera-based face detection because people block each other's visibility whereas wireless signals can be detected without blocking.Comment: This work has been partially funded by the European Union's Horizon 2020 research and innovation programme within the project "Worldwide Interoperability for SEmantics IoT" under grant agreement Number 72315

    Medical data processing and analysis for remote health and activities monitoring

    Get PDF
    Recent developments in sensor technology, wearable computing, Internet of Things (IoT), and wireless communication have given rise to research in ubiquitous healthcare and remote monitoring of human\u2019s health and activities. Health monitoring systems involve processing and analysis of data retrieved from smartphones, smart watches, smart bracelets, as well as various sensors and wearable devices. Such systems enable continuous monitoring of patients psychological and health conditions by sensing and transmitting measurements such as heart rate, electrocardiogram, body temperature, respiratory rate, chest sounds, or blood pressure. Pervasive healthcare, as a relevant application domain in this context, aims at revolutionizing the delivery of medical services through a medical assistive environment and facilitates the independent living of patients. In this chapter, we discuss (1) data collection, fusion, ownership and privacy issues; (2) models, technologies and solutions for medical data processing and analysis; (3) big medical data analytics for remote health monitoring; (4) research challenges and opportunities in medical data analytics; (5) examples of case studies and practical solutions
    • …
    corecore