659 research outputs found

    Health Participatory Sensing Networks for Mobile Device Public Health Data Collection and Intervention

    Get PDF
    The pervasive availability and increasingly sophisticated functionalities of smartphones and their connected external sensors or wearable devices can provide new data collection capabilities relevant to public health. Current research and commercial efforts have concentrated on sensor-based collection of health data for personal fitness and personal healthcare feedback purposes. However, to date there has not been a detailed investigation of how such smartphones and sensors can be utilized for public health data collection. Unlike most sensing applications, in the case of public health, capturing comprehensive and detailed data is not a necessity, as aggregate data alone is in many cases sufficient for public health purposes. As such, public health data has the characteristic of being capturable whilst still not infringing privacy, as the detailed data of individuals that may allow re-identification is not needed, but rather only aggregate, de-identified and non-unique data for an individual. These types of public health data collection provide the challenge of the need to be flexible enough to answer a range of public health queries, while ensuring the level of detail returned preserves privacy. Additionally, the distribution of public health data collection request and other information to the participants without identifying the individual is a core requirement. An additional requirement for health participatory sensing networks is the ability to perform public health interventions. As with data collection, this needs to be completed in a non-identifying and privacy preserving manner. This thesis proposes a solution to these challenges, whereby a form of query assurance provides private and secure distribution of data collection requests and public health interventions to participants. While an additional, privacy preserving threshold approach to local processing of data prior to submission is used to provide re-identification protection for the participant. The evaluation finds that with manageable overheads, minimal reduction in the detail of collected data and strict communication privacy; privacy and anonymity can be preserved. This is significant for the field of participatory health sensing as a major concern of participants is most often real or perceived privacy risks of contribution

    PAAL : a framework based on authentication, aggregation, and local differential privacy for internet of multimedia things

    Get PDF
    Internet of Multimedia Things (IoMT) applications generate huge volumes of multimedia data that are uploaded to cloud servers for storage and processing. During the uploading process, the IoMT applications face three major challenges, i.e., node management, privacy-preserving, and network protection. In this article, we propose a multilayer framework (PAAL) based on a multilevel edge computing architecture to manage end and edge devices, preserve the privacy of end-devices and data, and protect the underlying network from external attacks. The proposed framework has three layers. In the first layer, the underlying network is partitioned into multiple clusters to manage end-devices and level-one edge devices (LOEDs). In the second layer, the LOEDs apply an efficient aggregation technique to reduce the volumes of generated data and preserve the privacy of end-devices. The privacy of sensitive information in aggregated data is protected through a local differential privacy-based technique. In the last layer, the mobile sinks are registered with a level-two edge device via a handshaking mechanism to protect the underlying network from external threats. Experimental results show that the proposed framework performs better as compared to existing frameworks in terms of managing the nodes, preserving the privacy of end-devices and sensitive information, and protecting the underlying network. © 2014 IEEE

    Design and evaluation of a privacy architecture for crowdsensing applications

    Get PDF
    By using consumer devices such as cellphones, wearables and Internet of Things devices owned by citizens, crowdsensing systems are providing solutions to the community in areas such as transportation, security, entertainment and the environment through the collection of various types of sensor data. Privacy is a major issue in these systems because the data collected can potentially reveal aspects considered private by the contributors of data. We propose the Privacy-Enabled ARchitecture (PEAR), a layered architecture aimed at protecting privacy in privacy-aware crowdsensing systems. We identify and describe the layers of the architecture. We propose and evaluate the design of MetroTrack, a crowdsensing system that is based on the proposed PEAR architecture

    Self-regulatory information sharing in participatory social sensing

    Get PDF
    Participation in social sensing applications is challenged by privacy threats. Large-scale access to citizens’ data allow surveillance and discriminatory actions that may result in segregation phenomena in society. On the contrary are the benefits of accurate computing analytics required for more informed decision-making, more effective policies and regulation of techno-socio-economic systems supported by ‘Internet-of Things’ technologies. In contrast to earlier work that either focuses on privacy protection or Big Data analytics, this paper proposes a self-regulatory information sharing system that bridges this gap. This is achieved by modeling information sharing as a supply-demand system run by computational markets. On the supply side lie the citizens that make incentivized but self-determined decisions about the level of information they share. On the demand side stand data aggregators that provide rewards to citizens to receive the required data for accurate analytics. The system is empirically evaluated with two real-world datasets from two application domains: (i) Smart Grids and (ii) mobile phone sensing. Experimental results quantify trade-offs between privacy-preservation, accuracy of analytics and costs from the provided rewards under different experimental settings. Findings show a higher privacy-preservation that depends on the number of participating citizens and the type of data summarized. Moreover, analytics with summarization data tolerate high local errors without a significant influence on the global accuracy. In other words, local errors cancel out. Rewards can be optimized to be fair so that citizens with more significant sharing of information receive higher rewards. All these findings motivate a new paradigm of truly decentralized and ethical data analytics.ISSN:2193-112

    Privacy Management and Optimal Pricing in People-Centric Sensing

    Full text link
    With the emerging sensing technologies such as mobile crowdsensing and Internet of Things (IoT), people-centric data can be efficiently collected and used for analytics and optimization purposes. This data is typically required to develop and render people-centric services. In this paper, we address the privacy implication, optimal pricing, and bundling of people-centric services. We first define the inverse correlation between the service quality and privacy level from data analytics perspectives. We then present the profit maximization models of selling standalone, complementary, and substitute services. Specifically, the closed-form solutions of the optimal privacy level and subscription fee are derived to maximize the gross profit of service providers. For interrelated people-centric services, we show that cooperation by service bundling of complementary services is profitable compared to the separate sales but detrimental for substitutes. We also show that the market value of a service bundle is correlated with the degree of contingency between the interrelated services. Finally, we incorporate the profit sharing models from game theory for dividing the bundling profit among the cooperative service providers.Comment: 16 page

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications
    • …
    corecore