75,379 research outputs found

    PriPeARL: A Framework for Privacy-Preserving Analytics and Reporting at LinkedIn

    Full text link
    Preserving privacy of users is a key requirement of web-scale analytics and reporting applications, and has witnessed a renewed focus in light of recent data breaches and new regulations such as GDPR. We focus on the problem of computing robust, reliable analytics in a privacy-preserving manner, while satisfying product requirements. We present PriPeARL, a framework for privacy-preserving analytics and reporting, inspired by differential privacy. We describe the overall design and architecture, and the key modeling components, focusing on the unique challenges associated with privacy, coverage, utility, and consistency. We perform an experimental study in the context of ads analytics and reporting at LinkedIn, thereby demonstrating the tradeoffs between privacy and utility needs, and the applicability of privacy-preserving mechanisms to real-world data. We also highlight the lessons learned from the production deployment of our system at LinkedIn.Comment: Conference information: ACM International Conference on Information and Knowledge Management (CIKM 2018

    Student Privacy in Learning Analytics: An Information Ethics Perspective

    Get PDF
    In recent years, educational institutions have started using the tools of commercial data analytics in higher education. By gathering information about students as they navigate campus information systems, learning analytics “uses analytic techniques to help target instructional, curricular, and support resources” to examine student learning behaviors and change students’ learning environments. As a result, the information educators and educational institutions have at their disposal is no longer demarcated by course content and assessments, and old boundaries between information used for assessment and information about how students live and work are blurring. Our goal in this paper is to provide a systematic discussion of the ways in which privacy and learning analytics conflict and to provide a framework for understanding those conflicts. We argue that there are five crucial issues about student privacy that we must address in order to ensure that whatever the laudable goals and gains of learning analytics, they are commensurate with respecting students’ privacy and associated rights, including (but not limited to) autonomy interests. First, we argue that we must distinguish among different entities with respect to whom students have, or lack, privacy. Second, we argue that we need clear criteria for what information may justifiably be collected in the name of learning analytics. Third, we need to address whether purported consequences of learning analytics (e.g., better learning outcomes) are justified and what the distributions of those consequences are. Fourth, we argue that regardless of how robust the benefits of learning analytics turn out to be, students have important autonomy interests in how information about them is collected. Finally, we argue that it is an open question whether the goods that justify higher education are advanced by learning analytics, or whether collection of information actually runs counter to those goods

    Understanding privacy and data protection issues in learning analytics using a systematic review

    Get PDF
    The field of learning analytics has advanced from infancy stages into a more practical domain, where tangible solutions are being implemented. Nevertheless, the field has encountered numerous privacy and data protection issues that have garnered significant and growing attention. In this systematic review, four databases were searched concerning privacy and data protection issues of learning analytics. A final corpus of 47 papers published in top educational technology journals was selected after running an eligibility check. An analysis of the final corpus was carried out to answer the following three research questions: (1) What are the privacy and data protection issues in learning analytics? (2) What are the similarities and differences between the views of stakeholders from different backgrounds on privacy and data protection issues in learning analytics? (3) How have previous approaches attempted to address privacy and data protection issues? The results of the systematic review show that there are eight distinct, intertwined privacy and data protection issues that cut across the learning analytics cycle. There are both cross-regional similarities and three sets of differences in stakeholder perceptions towards privacy and data protection in learning analytics. With regard to previous attempts to approach privacy and data protection issues in learning analytics, there is a notable dearth of applied evidence, which impedes the assessment of their effectiveness. The findings of our paper suggest that privacy and data protection issues should not be relaxed at any point in the implementation of learning analytics, as these issues persist throughout the learning analytics development cycle. One key implication of this review suggests that solutions to privacy and data protection issues in learning analytics should be more evidence-based, thereby increasing the trustworthiness of learning analytics and its usefulness.publishedVersio

    Privacy Tradeoffs in Predictive Analytics

    Full text link
    Online services routinely mine user data to predict user preferences, make recommendations, and place targeted ads. Recent research has demonstrated that several private user attributes (such as political affiliation, sexual orientation, and gender) can be inferred from such data. Can a privacy-conscious user benefit from personalization while simultaneously protecting her private attributes? We study this question in the context of a rating prediction service based on matrix factorization. We construct a protocol of interactions between the service and users that has remarkable optimality properties: it is privacy-preserving, in that no inference algorithm can succeed in inferring a user's private attribute with a probability better than random guessing; it has maximal accuracy, in that no other privacy-preserving protocol improves rating prediction; and, finally, it involves a minimal disclosure, as the prediction accuracy strictly decreases when the service reveals less information. We extensively evaluate our protocol using several rating datasets, demonstrating that it successfully blocks the inference of gender, age and political affiliation, while incurring less than 5% decrease in the accuracy of rating prediction.Comment: Extended version of the paper appearing in SIGMETRICS 201

    Synthetized Homotopy Based Privacy for Device Analytics

    Get PDF
    Data analytics on mobile devices is important for improving user experience and developing better products and services. Device analytics need to be performed in compliance with regulations. A privacy compliance utility needs to establish univalence before and after privacy compliance to generate reliable and accurate data for device analytics. This disclosure provides a specification for a privacy utility based on synthetized homotopy that can be utilized by services that perform device analytics. The techniques described in this disclosure can also be used to enable privacy compliant content sharing with nearby devices. The techniques described in this disclosure can be utilized for privacy compliant device analytics without relying on the classic set theory and logic assumptions on axiom of choice (AC) and the law of excluded middle (LEM)

    Privacy-enhancing Aggregation of Internet of Things Data via Sensors Grouping

    Full text link
    Big data collection practices using Internet of Things (IoT) pervasive technologies are often privacy-intrusive and result in surveillance, profiling, and discriminatory actions over citizens that in turn undermine the participation of citizens to the development of sustainable smart cities. Nevertheless, real-time data analytics and aggregate information from IoT devices open up tremendous opportunities for managing smart city infrastructures. The privacy-enhancing aggregation of distributed sensor data, such as residential energy consumption or traffic information, is the research focus of this paper. Citizens have the option to choose their privacy level by reducing the quality of the shared data at a cost of a lower accuracy in data analytics services. A baseline scenario is considered in which IoT sensor data are shared directly with an untrustworthy central aggregator. A grouping mechanism is introduced that improves privacy by sharing data aggregated first at a group level compared as opposed to sharing data directly to the central aggregator. Group-level aggregation obfuscates sensor data of individuals, in a similar fashion as differential privacy and homomorphic encryption schemes, thus inference of privacy-sensitive information from single sensors becomes computationally harder compared to the baseline scenario. The proposed system is evaluated using real-world data from two smart city pilot projects. Privacy under grouping increases, while preserving the accuracy of the baseline scenario. Intra-group influences of privacy by one group member on the other ones are measured and fairness on privacy is found to be maximized between group members with similar privacy choices. Several grouping strategies are compared. Grouping by proximity of privacy choices provides the highest privacy gains. The implications of the strategy on the design of incentives mechanisms are discussed

    Guest Editorial: Ethics and Privacy in Learning Analytics

    Get PDF
    The European Learning Analytics Community Exchange (LACE) project is responsible for an ongoing series of workshops on ethics and privacy in learning analytics (EP4LA), which have been responsible for driving and transforming activity in these areas. Some of this activity has been brought together with other work in the papers that make up this special issue. These papers cover the creation and development of ethical frameworks, as well as tools and approaches that can be used to address issues of ethics and privacy. This editorial suggests that it is worth taking time to consider the often intertangled issues of ethics, data protection and privacy separately. The challenges mentioned within the special issue are summarised in a table of 22 challenges that are used to identify the values that underpin work in this area. Nine ethical goals are suggested as the editors’ interpretation of the unstated values that lie behind the challenges raised in this paper

    CryptGraph: Privacy Preserving Graph Analytics on Encrypted Graph

    Full text link
    Many graph mining and analysis services have been deployed on the cloud, which can alleviate users from the burden of implementing and maintaining graph algorithms. However, putting graph analytics on the cloud can invade users' privacy. To solve this problem, we propose CryptGraph, which runs graph analytics on encrypted graph to preserve the privacy of both users' graph data and the analytic results. In CryptGraph, users encrypt their graphs before uploading them to the cloud. The cloud runs graph analysis on the encrypted graphs and obtains results which are also in encrypted form that the cloud cannot decipher. During the process of computing, the encrypted graphs are never decrypted on the cloud side. The encrypted results are sent back to users and users perform the decryption to obtain the plaintext results. In this process, users' graphs and the analytics results are both encrypted and the cloud knows neither of them. Thereby, users' privacy can be strongly protected. Meanwhile, with the help of homomorphic encryption, the results analyzed from the encrypted graphs are guaranteed to be correct. In this paper, we present how to encrypt a graph using homomorphic encryption and how to query the structure of an encrypted graph by computing polynomials. To solve the problem that certain operations are not executable on encrypted graphs, we propose hard computation outsourcing to seek help from users. Using two graph algorithms as examples, we show how to apply our methods to perform analytics on encrypted graphs. Experiments on two datasets demonstrate the correctness and feasibility of our methods
    • …
    corecore