8,091 research outputs found

    Privacy Preserving Data Mining For Horizontally Distributed Medical Data Analysis

    Get PDF
    To build reliable prediction models and identify useful patterns, assembling data sets from databases maintained by different sources such as hospitals becomes increasingly common; however, it might divulge sensitive information about individuals and thus leads to increased concerns about privacy, which in turn prevents different parties from sharing information. Privacy Preserving Distributed Data Mining (PPDDM) provides a means to address this issue without accessing actual data values to avoid the disclosure of information beyond the final result. In recent years, a number of state-of-the-art PPDDM approaches have been developed, most of which are based on Secure Multiparty Computation (SMC). SMC requires expensive communication cost and sophisticated secure computation. Besides, the mining progress is inevitable to slow down due to the increasing volume of the aggregated data. In this work, a new framework named Privacy-Aware Non-linear SVM (PAN-SVM) is proposed to build a PPDDM model from multiple data sources. PAN-SVM employs the Secure Sum Protocol to protect privacy at the bottom layer, and reduces the complex communication and computation via Nystrom matrix approximation and Eigen decomposition methods at the medium layer. The top layer of PAN-SVM speeds up the whole algorithm for large scale datasets. Based on the proposed framework of PAN-SVM, a Privacy Preserving Multi-class Classifier is built, and the experimental results on several benchmark datasets and microarray datasets show its abilities to improve classification accuracy compared with a regular SVM. In addition, two Privacy Preserving Feature Selection methods are also proposed based on PAN-SVM, and tested by using benchmark data and real world data. PAN-SVM does not depend on a trusted third party; all participants collaborate equally. Many experimental results show that PAN-SVM can not only effectively solve the problem of collaborative privacy-preserving data mining by building non-linear classification rules, but also significantly improve the performance of built classifiers

    Privacy Preserving Optics Clustering

    Get PDF
    OPTICS is a well-known density-based clustering algorithm which uses DBSCAN theme without producing a clustering of a data set openly, but as a substitute, it creates an augmented ordering of that particular database which represents its density-based clustering structure. This resulted cluster-ordering comprises information which is similar to the density based clustering’s conforming to a wide range of parameter settings. The same algorithm can be applied in the field of privacy-preserving data mining, where extracting the useful information from data which is distributed over a network requires preservation of privacy of individuals’ information. The problem of getting the clusters of a distributed database is considered as an example of this algorithm, where two parties want to know their cluster numbers on combined database without revealing one party information to other party. This issue can be seen as a particular example of secure multi-party computation and such sort of issues can be solved with the assistance of proposed protocols in our work along with some standard protocols

    Secret charing vs. encryption-based techniques for privacy preserving data mining

    Get PDF
    Privacy preserving querying and data publishing has been studied in the context of statistical databases and statistical disclosure control. Recently, large-scale data collection and integration efforts increased privacy concerns which motivated data mining researchers to investigate privacy implications of data mining and how data mining can be performed without violating privacy. In this paper, we first provide an overview of privacy preserving data mining focusing on distributed data sources, then we compare two technologies used in privacy preserving data mining. The first technology is encryption based, and it is used in earlier approaches. The second technology is secret-sharing which is recently being considered as a more efficient approach
    corecore